1. Borenstein, J.; Koren, Y. (1991). "The vector field histogram-fast obstacle avoidance for mobilerobots". Robotics and Automation, IEEE Transactions on 7 (3): 278-288. doi:10.1109/70.88137. Retrieved 2008-06-30. [
DOI:10.1109/70.88137]
2. O. Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots", International Journal of Robotics Research, Vol. 5, No. 1, pp.90-99, 1986. [
DOI:10.1177/027836498600500106]
3. Song K, Chang C. Reactive navigation in dynamic environment using a multisensor predictor. IEEE Transactions on Systems, Man, and Cybernetics 1999;29(6):870-80. [
DOI:10.1109/3477.809039] [
PMID]
4. Pratihar DK, Deb K, Chosh A. A genetic-fuzzy approach for mobile robot navigation among moving obstacles. International Journal of Approximate Reasoning 1999;20:145-72. [
DOI:10.1016/S0888-613X(98)10026-9]
5. Aranibar D, Alsina P. Reinforcement learning-based-path planning for autonomous robots ENRI: Encontro Nacional de Robo' tica Inteligente, 2004.
6. Park J, Kim J, Song J. Path Planning for a robot manipulator based on probabilistic roadmap and reinforcement learning. International Journal of Control, Automation, and Systems 2007;5:674-80.
7. Tsypkin, Adaptation and Learning in Automatic Systems. New York: Academic, 1971
8. Prestero T. 1994. Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. MTS/IEEE OCEANS 2001 Conference, Vol. 1, pp. 450 - 455. [
DOI:10.1575/1912/3040]
9. Seyyed Mohammad Reza Farshchi. 2011. A Novel Implementation of G-Fuzzy Logic Controller Algorithm on mobile Robot Motion Planning Problem. Computer and Information Science, Vol. 4, No. 2;102-114. [
DOI:10.5539/cis.v4n2p102]