1. Neves RLP, et al. Post-harvesting silvicultural treatments in canopy logging gaps: medium-term responses of commercial tree species under tending and enrichment planting. Forest Ecol Manag. 2019; 451: 117521. [
DOI:10.1016/j.foreco.2019.117521]
2. Jiang C, et al. Failure mode-based calculation method for bending bearing capacities of normal cross-sections of corroded reinforced concrete beams. Eng Struct. 2022; 258: 114113. [
DOI:10.1016/j.engstruct.2022.114113]
3. Ma H, et al. Failure mechanism and design method of reticulated shells considering joint damage accumulation effect under earthquake load. in Structures. Elsevier. 2022. [
DOI:10.1016/j.istruc.2022.03.069]
4. Christensen RM. Mechanisms and measures for the ductility of materials failure. Proceedings of the Royal Society A. 2020; 476(2239): 20190719. [
DOI:10.1098/rspa.2019.0719]
5. Fallah-Valukolaee S, Hashemi S, Nematzadeh M. Effect of steel fiber on flexural performance of bilayer concrete beams with steel and GFRP rebars: Experiments and predictions. Elsevier. Struct. 2022. [
DOI:10.1016/j.istruc.2022.03.007]
6. Fu B, et al. Concrete reinforced with macro fibres recycled from waste GFRP. Construct Build Mater. 2021; 310: 125063. [
DOI:10.1016/j.conbuildmat.2021.125063]
7. Reichenbach S, et al. A review on embedded fibre-reinforced polymer reinforcement in structural concrete in Europe. Construct Build Mater. 2021; 307: 124946. [
DOI:10.1016/j.conbuildmat.2021.124946]
8. Shen Y, Sun J, Liang S. Interpretable machine learning models for punching shear strength estimation of FRP reinforced concrete slabs. Crystal. 2022; 12(2): 259. [
DOI:10.3390/cryst12020259]
9. Law R, et al. Ecological information from spatial patterns of plants: insights from point process theory. J Ecol. 2009; 97(4): 616-628. [
DOI:10.1111/j.1365-2745.2009.01510.x]
10. Geetha N, Bridjesh P. Overview of machine learning and its adaptability in mechanical engineering. Materials Today: Proceedings, 2020. [
DOI:10.1016/j.matpr.2020.09.611] [
PMID] [
PMCID]
11. Zhou Y, et al. Improved finite difference analysis of dynamic responses of concrete members reinforced with FRP bars under explosion. Compos Struct. 2019; 230: 111518. [
DOI:10.1016/j.compstruct.2019.111518]
12. Nigro E, et al. Guidelines for flexural resistance of FRP reinforced concrete slabs and beams in fire. Compos B Eng. 2014; 58: 103-112. [
DOI:10.1016/j.compositesb.2013.10.007]
13. Shahnewaz M, et al. Optimized shear design equation for slender concrete beams reinforced with FRP bars and stirrups using genetic algorithm and reliability analysis. Eng Struct. 2016; 107: 151-165. [
DOI:10.1016/j.engstruct.2015.10.049]
14. Chen SZ, et al. Development of data-driven prediction model for CFRP-steel bond strength by implementing ensemble learning algorithms. Construct Build Mater. 2021; 303: 124470. [
DOI:10.1016/j.conbuildmat.2021.124470]
15. Mangalathu S, et al. Machine-learning interpretability techniques for seismic performance assessment of infrastructure systems. Eng Struct. 2022; 250: 112883. [
DOI:10.1016/j.engstruct.2021.112883]
16. Nguyen HD, Truong GT, Shin M. Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs. Eng Struct. 2021; 235: 112067. [
DOI:10.1016/j.engstruct.2021.112067]
17. Mangalathu S, et al. Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement. J Build Eng. 2021; 39: 102300. [
DOI:10.1016/j.jobe.2021.102300]
18. Rahman A, et al. A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data. Compos Sci Tech. 2021; 207: 108627. [
DOI:10.1016/j.compscitech.2020.108627]
19. Ilawe NV, Zimmerman JA, Wong BM. Breaking badly: DFT-D2 gives sizeable errors for tensile strengths in palladium-hydride solids. J Chem Theory Comput. 2015; 11(11): 5426-5435. [
DOI:10.1021/acs.jctc.5b00653] [
PMID]
20. Michaluk CR, et al. Flexural behavior of one-way concrete slabs reinforced by fiber reinforced plastic reinforcements. Struct J. 1998; 95(3): 353-365. [
DOI:10.14359/552]
21. Abaqus Users Manual V. 6.10-1. Dassault Systemes Simulia Corp. Providence, RI, 2011.
22. Sheil D, Burslem DF, Alder D. The interpretation and misinterpretation of mortality rate measures. J Ecol. 1995; 331-333. [
DOI:10.2307/2261571]
23. Rocha FR, et al. Multicommutation in flow analysis: concepts, applications and trends. Anal Chim Act. 2002; 468(1): 119-131. [
DOI:10.1016/S0003-2670(02)00628-1]
24. Park R, Paulay T. Reinforced Concrete Structures, John Wiley & Sons. NY, USA, 1975. [
DOI:10.1002/9780470172834]