Volume 3, Issue 4 (12-2021)                   sjfst 2021, 3(4): 1-12 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chahshouri F, Khani E, Savaloni H, Savari R. Nano-Structural Characteristics and Optical and Electrical Properties of Obliquely Deposited Manganese Oxide Thin Films. sjfst 2021; 3 (4) :1-12
URL: http://sjfst.srpub.org/article-6-129-en.html
School of Physics, College of Science, University of Tehran, North-Kargar Street, Tehran, Iran
Abstract:   (1005 Views)
In this work, manganese oxide thin films as a graded helical square tower-like (terraced) sculptured thin films with 8, 9, and 10 arms were deposited on a glass substrate by oblique angle deposition (OAD) method. Structural and morphological characteristics of the produced samples were obtained through x-ray diffraction (XRD), atomic force microscopy (AFM), and field emission electron microscopy (FESEM) analyses. The optical and electrical properties of manganese oxide thin film were studied by Photoluminescence (PL), UV- visible (UV-VIS), and V-I measurement. The spectrophotometry analysis on both s-and p-polarized lights at 90° incident light angles carried out for obtaining the optical spectra of the samples. Then, it used to calculate refractive index, energy gaps, and absorption peaks. Photoluminescence spectra for MnO films showed a 2.31, 2.28, and 2.26 eV gap energy in 8, 9, and 10 arms. The electrical resistance measurements of these samples showed that the resistance has strongly dependent on the intensity and energy of the incident light. The electrical resistance of these samples was also investigated under green, blue, red, and light radiation with 100 watts/cm2 power density.
Full-Text [PDF 1299 kb]   (415 Downloads)    
Type of Study: Research | Subject: Materials Science (General)
Received: 2021/09/15 | Revised: 2021/10/19 | Accepted: 2021/10/30 | Published: 2021/12/25

References
1. Xia H. et al., Manganese oxide thin films prepared by pulsed laser deposition for thin film microbatteries. Mater Chem Phys. 2014; 143(2): 720-727. [DOI:10.1016/j.matchemphys.2013.10.005]
2. Yang D. Pulsed laser deposition of manganese oxide thin films for supercapacitor applications. J Power Sour. 2011; 196(20): 8843-8849. [DOI:10.1016/j.jpowsour.2011.06.045]
3. Staiti P, Lufrano F. Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors. J Power Sour. 2009; 187(1): 284-289. [DOI:10.1016/j.jpowsour.2008.10.080]
4. Sanchez L. et al., Low-temperature mixed spinel oxides as lithium insertion compounds. J Mater Chem. 1996; 6(1): 37-39. [DOI:10.1039/JM9960600037]
5. Baca R. Manganese oxide thin-films for current-signal sensing and thermal insulation. Mater Sci Semiconduct Proc. 2013; 16(5): 1280-1284. [DOI:10.1016/j.mssp.2013.01.021]
6. Gurban AM. et al., Manganese oxide based screen-printed sensor for xenoestrogens detection. Sensors and Actuators B: Chemical, 2015; 210: 273-280. [DOI:10.1016/j.snb.2014.12.111]
7. Simon P, Gogotsi Y. Materials for electrochemical capacitors, in Nanoscience and Technology: Collect Rev Nat J. World Sci. 2010; 320-329. [DOI:10.1142/9789814287005_0033]
8. Tian X. et al., Trace level detection of hydrogen gas using birnessite-type manganese oxide. Sensors and Actuators B: Chemical, 2015; 207: 34-42. [DOI:10.1016/j.snb.2014.08.018]
9. Liu C. et al., Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods. J Alloy Compound. 2017; 727: 362-369. [DOI:10.1016/j.jallcom.2017.08.150]
10. Nilsen O, Fjellvåg H, Kjekshus A. Growth of manganese oxide thin films by atomic layer deposition. Thin Solid Film. 2003; 444(1-2): 44-51. [DOI:10.1016/S0040-6090(03)01101-5]
11. Tian HY. et al., Influences of annealing temperature on the optical and structural properties of (Ba, Sr) TiO3 thin films derived from sol-gel technique. Thin Solid Film. 2002; 408(1-2): 200-205. [DOI:10.1016/S0040-6090(02)00046-9]
12. Dakhel A. Correlated structural and electrical properties of thin manganese oxide films. Thin Solid Film. 2006; 496(2): 353-359. [DOI:10.1016/j.tsf.2005.09.024]
13. Thirumalairajan S. et al., Structural and optical investigation of manganese oxide thin films by spray pyrolysis technique. Optoelectron Adv Mater Rapid Comm. 2008; 2: 779-781.
14. Lee GH. et al., Anomalous magnetic properties of MnO nanoclusters. J Am Chem Soc. 2002; 124(41): 12094-12095. [DOI:10.1021/ja027558m] [PMID]
15. Kim KJ, Park YR. Sol-gel growth and structural and optical investigation of manganese- oxide thin films: structural transformation by Zn doping. J Cryst Growth. 2004; 270(1-2): 162-167. [DOI:10.1016/j.jcrysgro.2004.06.019]
16. Jamil H. et al., Structural and optical properties of manganese oxide thin films deposited by pulsed laser deposition at different substrate temperatures. Laser Phys. 2017; 27(9): 096101. [DOI:10.1088/1555-6611/aa7cc8]
17. Vlakhov E. et al., Influence of the substrate on growth and magnetoresistance of La 0.7 Ca 0.3 MnO z thin films deposited by magnetron sputtering. J Appl Phys. 1998; 83(4): 2152-2157. [DOI:10.1063/1.366952]
18. Hwang KH, Lee SH, Joo SK. Characterization of sputter‐deposited LiM n2 O4 thin films for rechargeable microbatteries. J Electrochem Soc. 1994; 141(12): 3296-3299. [DOI:10.1149/1.2059329]
19. Zhang H. et al., Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008; 8(9): 2664-2668. [DOI:10.1021/nl800925j] [PMID]
20. Erlandsson O. et al., Electrochromic properties of manganese oxide (MnOx) thin films made by electron beam deposition. 1993; 139: 451-457. [DOI:10.1002/pssa.2211390218]
21. Hawkeye MM, Brett MJ. Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J Vacuum Sci Technol A: Vacuum Surf Film. 2007; 25(5): 1317-1335. [DOI:10.1116/1.2764082]
22. Jensen MO, Brett MJ. Periodically structured glancing angle deposition thin films. IEEE Trans Nanotechnol. 2005; 4(2): 269-277. [DOI:10.1109/TNANO.2004.842061]
23. Li H. et al., The morphology and texture of Cu nanorod films grown by controlling the directional flux in physical vapor deposition. Nanotechnol. 2008; 19(33): 335708. [DOI:10.1088/0957-4484/19/33/335708] [PMID]
24. Babaei F, Savaloni H. Optical absorption transitions in Mn star-like helical sculptured thin films. Plasmonic. 2018; 13(1): 203-214. [DOI:10.1007/s11468-017-0500-x]
25. Savaloni H, Goli-Haghighi S, Babaei R. Application of Mn-Cu helical star-shaped (pine- tree-like) sculpted thin films with different symmetries using surface-enhanced raman spectroscopy (SERS). Appl Spectroscopy. 2019; 0003702819841913. [DOI:10.1177/0003702819841913] [PMID]
26. Savaloni H, Esfandiar A. Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films. Appl Surf Sci. 2011; 257(22): 9425-9434. [DOI:10.1016/j.apsusc.2011.06.023]
27. Fakharpour M, Savaloni H. Fabrication of graded helical square tower-like Mn sculptured thin films and investigation of their electrical properties: comparison with perturbation theory. J Theoretical Appl Phys. 2017; 11(2): 109-117. [DOI:10.1007/s40094-017-0242-3]
28. Savaloni H, Haydari-Nasab F, Malmir M. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films. Appl Surf Sci. 2011; 257(21): 9044-9055. [DOI:10.1016/j.apsusc.2011.05.097]
29. Siabi-Garjan A, Savaloni H. Extinction spectra and electric field enhancement of silver chiral nano-flower shaped nanoparticle; comparison of discrete dipole approximation results with experimental results. Eur Phys J B. 2013; 86(6): 257. [DOI:10.1140/epjb/e2013-30943-4]
30. Abdi F, Siabi-Garjan A, Savaloni H. Investigation on the dependence of optical spectra of silver chiral nanostructures on shape, dimensions and incident light by discrete dipole approximation. J Theoretical Appl Phys. 2012; 6(1): 11. [DOI:10.1186/2251-7235-6-11]
31. Abdi F, Siabi-Gerjan A, Savaloni H. On the discrete dipole approximation investigation of the extinction spectra of Ag/glass nano-flower thin film with threefold symmetry. J Theoretical Appl Phys. 2012; 6(1): 4. [DOI:10.1186/2251-7235-6-4]
32. Lakhtakia A. Sculptured thin films, in Electromagnetic Materials. World Sci. 2005; 97-102. [DOI:10.1142/9789812701718_0020]
33. Robbie K. Chiral sculptured thin films. Nat. 1996; 384(6610): 616-618. [DOI:10.1038/384616a0]
34. Hodgkinson IJ. et al., Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances. Optic Comm. 2002; 210(3-6): 201-211. [DOI:10.1016/S0030-4018(02)01814-X]
35. Steele JJ. et al., Nanostructured gradient index optical filter for high-speed humidity sensing. Sensors and Actuators B: Chemical, 2006; 120(1): 213-219. [DOI:10.1016/j.snb.2006.02.003]
36. Esfandiar A, Savaloni H, Placido F. On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films. Physica E: Low-dimensional Systems and Nanostructures, 2013; 50: 88-96. [DOI:10.1016/j.physe.2013.03.002]
37. Harris KD. et al., Microchannel surface area enhancement using porous thin films. J Electrochem Soc. 2000; 147(5): 2002-2006. [DOI:10.1149/1.1393475]
38. Lakhtakia A. et al., Six emerging directions in sculptured-thin-film research. Adv Solid State Phys. 2008; 295-307. [DOI:10.1007/978-3-540-38235-5_22]
39. Savaloni H. et al., Nano-structure and optical properties (plasmonic) of graded helical square tower-like (terraced) Mn sculptured thin films. Appl Surf Sci. 2017; 393: 234-255. [DOI:10.1016/j.apsusc.2016.10.012]
40. Pitarke J. et al., Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys. 2006; 70(1): 1. [DOI:10.1088/0034-4885/70/1/R01]
41. El-Nahass M, Farag A, Atta A. Influence of heat treatment and gamma-rays irradiation on the structural and optical characterizations of nano-crystalline cobalt phthalocyanine thin films. Synthet Metal. 2009; 159(7-8): 589-594. [DOI:10.1016/j.synthmet.2008.11.029]
42. Gode F, Gumus C, Zor M. Influence of the thickness on physical properties of chemical bath deposited hexagonal ZnS thin films. J Optoelectron Adv Mater. 2007; 9(7): 2186.
43. Farea A. et al., Structure and electrical properties of Co0. 5CdxFe2. 5- xO4 ferrites. J Alloy Compound. 2008; 464(1-2): 361-369. [DOI:10.1016/j.jallcom.2007.09.126]
44. Ojeda CB, Rojas FS. Recent applications in derivative ultraviolet/visible absorption spectrophotometry: 2009-2011: A review. Microchem J. 2013; 106: 1-16. [DOI:10.1016/j.microc.2012.05.012]
45. Isik M, Gasanly N. Composition-tuned band gap energy and refractive index in GaSxSe1- x layered mixed crystals. Mater Chem Phys. 2017; 190: 74-78. [DOI:10.1016/j.matchemphys.2016.12.059]
46. Krane KS. Modern physics. Modern Physics, 2nd Edition, by Kenneth S. Krane. ISBN 0-471-82872-6. Wiley-VCH, August 1995: 608.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.