1. Alvarez Grima M, Bruines PA, Verhoef PNW. Modeling tunnel boring machine performance by neuro-fuzzy methods. Tunnell Underground Space Technol. 2000; 15(3). [
DOI:10.1016/S0886-7798(00)00055-9]
2. Ge Y, Wang J, Li K. Prediction of hard rock TBM penetration rate using least square support vector machine. 13th IFAC Symposium on Large Scale Complex Systems: Theory and Applications, China, 2013; 7-10. [
DOI:10.3182/20130708-3-CN-2036.00105]
3. Tao H, Jingcheng W, Langwen Z. Prediction of hard rock TBM penetration rate using random forests. Proceedings of the 27th Chinese Control and Decision Conference, IEEE, China, 2015; 3716-3720. [
DOI:10.1109/CCDC.2015.7162572]
4. Yagiz S, Gokceoglu C, Sezer E, Iplikci S. Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Appl Eng Artifici Intel. 2009; 22: 808-814. [
DOI:10.1016/j.engappai.2009.03.007]
5. Yagiz S, Karahan H. Prediction of hard rock TBM performance rate using particle swarm optimization. Int J Rock Mechan Min Sci. 2011; 48: 427-433. [
DOI:10.1016/j.ijrmms.2011.02.013]
6. Yoo C, Kim J. Tunneling performance prediction using an integrated GIS and neural network. Comput Geotech J. 2007; 34: 19-30. [
DOI:10.1016/j.compgeo.2006.08.007]
7. Benardos A, Kaliampakos D. Modelling TBM performance with artificial neural networks. Tunnel Underground Space Technol. 2004; 19: 597-605. [
DOI:10.1016/j.tust.2004.02.128]
8. Yagiz S, Karahan H. Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass. Int J Rock Mechan Min Sci. 2015; 8: 308-315. [
DOI:10.1016/j.ijrmms.2015.09.019]
9. Gao L, Li X. Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions. J Centr S Univ. 2015; 22: 290-295. [
DOI:10.1007/s11771-015-2520-z]
10. Shao C, Li X, Su H. Performance prediction of hard rock TBM based on extreme learning machine. In: Lee J, Lee MC, Liu H, Ryu JH. editors. ICIRA: Intelligent robotics and applications. Lecture notes in computer science, Berlin-Heidelberg: Springer, 2013; 8103: 409e16. [
DOI:10.1007/978-3-642-40849-6_40]
11. Li J, Li P, Guo D, Li X, Chen Z. Advanced prediction of tunnel boring machine performance based on big data. Geosci Front. 2021; 12(1): 331-338. [
DOI:10.1016/j.gsf.2020.02.011]
12. Samadi H, Hassanpour J, Farrokh E. Maximum surface settlement prediction in EPB TBM tunneling using soft computing techniques. ICCEET Conf. 2021. [
DOI:10.1088/1742-6596/1973/1/012195]
13. Samadi H, Hassanpour J. Analysis the stability of work face in EPB tunneling using deep learning (GRU) and PCA techniques. 6th Dam Tunnel Conf Exhib. 2021.
14. Farrokh E, Rostami J, Laughton C. Study of various models for estimation of penetration rate of hard rock TBMs. Tunnel Underground Space Technol. 2010; 30: 110-123. [
DOI:10.1016/j.tust.2012.02.012]
15. Farrokh E. Study of utilization factor and advance rate of hard rock TBMs. PhD. Thesis, Pennstate University, USA. 2012.
16. Baskerville CA, Mose GD. The separation of the Hartland formation and Ravenswood granodiorite from the Fordham gneiss at Cameron's line in the New York City area, Northeastern Geol. 1989; 11(1): 22-28.
17. Khalighi BB, Diehl JJ. High performance tunnel boring machine for Queens Water Tunnel No. 3: A design and case history. In: Proceeding of the rapid excavation and tunneling conference (RETC), Chapter 11, SME publication. 1997.
18. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks. 1995.
19. Broomhead D, Lowe D. Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment Malvern, United Kingdom. 1988.