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ABSTRACT 

In this paper, the spatial distribution of liquefaction potential is estimated using in-
situ data from the Standard Penetration Test (SPT). For this purpose, a case study 
of a liquefiable soil at the Azad University of Qeshm is selected in the numerical 
modeling. After conducting the site investigation and determining SPT results at 
four boreholes, two distinct modeling approaches are implemented to evaluate the 
Liquefaction Potential Index (LPI) at the considered site; In the first method, the 
conditional random field for SPT data is generated in a layer-by-layer strategy and 
then, the LPI is obtained using a SPT-based empirical relations at each elemental 
column. On the other hand, in the second method, the LPI is first determined at 
each borehole location and then, this parameter is adopted as a stochastic variable 
in the construction of surficial conditional random field. It can be concluded that 
both approaches are able to capture the varying severity levels of liquefaction at 
most locations across the area of study. However, the comparison shows that 
using the first approach results in a more fluctuated LPI results with almost the 
same extremum values. 

Keywords: Liquefaction potential, SPT, Conditional random field, Probabilistic 
analysis 

Introduction 

The soil liquefaction phenomenon is an issue of 
concern to earthquake geotechnical engineers in recent 
years. Liquefaction is called to a state of saturated 
granular media that loses its shear strength due to the 
increase in pore water pressure and, consequently, 
displacements. With the occurrence of this 
phenomenon, saturated sandy soils will lose their 
strength due to seismic loadings, and soil particles will 
flow. According to many case studies, soil liquefaction 
is one of the most important reasons for damages to 
lifelines, buildings, and infrastructures [1]. Liquefaction 
can cause large displacements in the ground, soil 
failures, reduction of bearing capacity, differential 
settlements in foundations, and sand boiling. This 
phenomenon has been observed in many earthquakes 
such as Alaska (1964), Niigata (1964), Loma Prieta 
(1989), Kobe (1995), Chi Chi (1999), and recently at 
Shonbeh Bushehr (2013). Manjil Roodbar had the 
largest consequence of liquefaction in 1990 in Iran [2]. 

Soils are known as engineering materials with the most 
spatial changes of texture and resistance. The spatial 
uncertainty of soil properties has led to an analysis of 
issues such as estimating the location of the 
liquefaction in a significant function of the statistics 
and possibilities. Moreover, the inherent uncertainties 
of the characteristics which affect liquefaction dictate 
that this problem is of a probabilistic nature rather than 
being deterministic. In this regard, probabilistic 
methods have long been used to model the 
geotechnical properties of soil [3]. Probabilistic analysis 
provides a means of evaluating the combined effects of 
uncertainties and offers a logical framework for 
choosing factors of safety that are appropriate for the 
degree of uncertainty and the consequences of failure 
[4]. For instance, Juang et al. [5] investigated the risk-
based liquefaction potential evaluation using SPTs, 
which defines a boundary that separates liquefaction 
from the no-liquefaction occurrence. Johari et al. [6] 
presented an analytical approach to probabilistic 
modeling of liquefaction based on shear wave velocity. 
Rezania et al. [7] had research based on evolutionary 
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polynomial regression for determination of liquefaction 
potential of sands and also, Baise and Lenz [8] 
presented an alternate approach which uses 
geostatistical analysis to evaluate spatial correlation to 
interpolate across geologic units, therefore, providing 
an estimate of the spatial extent of liquefaction 
potential within geologic boundaries. 
In this research, it is attempted to compare two 
methods for determining the spatial distribution of the 
occurrence of liquefaction at a case study. For this 
purpose, modeling of spatial variation of SPT records is 
conducted using the conditional simulation method. In 
the first method, which is termed the local soil property 
approach, the conditional random field for SPT data is 
generated in a layer-by-layer strategy and then, the LPI 
is obtained using an SPT-based empirical relation. In 
the second method, which is called the averaged index 
approach, the LPI is first determined at each borehole 
location and then, this parameter is adopted as a 
stochastic variable in the construction of the surficial 
conditional random field. Finally, the obtained results 
are compared to each other. 

Evaluation of liquefaction potential 

Standard penetration test  

The SPT is a well-known soil exploration test that is 
widely used to determine the in-situ properties of soil. 
The test is especially suited for cohesionless soils as the 
correlation between the SPT value and many resistance 
parameters are now well established. The SPT is 
performed from the base of a borehole where a drop 
weight of certain mass and falling distance drives a 
standardized cone into the soil. The number of blows 
required for a certain penetration depth is being 
recorded [9]. Several corrections are applied to SPT 
blow counts in order to achieve a normalized value 
prior to use. As the test progresses, soil samples and 
groundwater information are also collected. A record is 
made of the number of blows required to drive each 
150 mm (6-in) segment into the soil. This is done until 
450 mm depth is achieved or otherwise penetration 
refusal. The blows recorded for the first 150 mm are 
usually discarded because of fall-in and contamination 
in the hole. The number of hammer blows required to 
drive the sampler for the last 300 mm (12-in) is an 

indication of the relative density of the material and is 
generally referred to as the Standard Penetration 
Number or SPT blow count Value (N) [10]. 

Procedure of SPT-based liquefaction prediction 

The SPT is one of the most usual in-situ tests in order 
to determine the resistance against liquefaction. 
Parameters that cause an increase in the resistance 
against liquefaction are density, strain before the 
earthquake, over consolidation ratio, lateral earth 
pressure and also high SPT number. In 1985 studies 
have been taken by Seed and Idriss [11] for a clean 
Sand to measure the least ratio of cyclic strain, which is 
expected for the occurrence of liquefaction in clean 
sand with a given SPT. Having fine ingredients can 
influence SPT, therefore, it must be calculated in the 
evaluation of the resistance against liquefaction [12]. 
Youd and Idriss [13] developed the following equations 
with the assistance of Seed and Idriss [11] for 
correction of (N1)60 to an equivalent clean sand value, 
(N1)60,cs: 

1 60, 1 60( ) ( )csN N = +  (1) 

Where (N1)60 is the corrected SPT blow count 
normalized to the effective overburden stress of 100 
kPa and α and β are coefficients determined from the 
following equations [14]: 
 

  0 =      5%FC   (2a) 

( )2  1.76 –  190 /exp FC =  
 

  

5 <   35%FC   
(2b) 

  5.0 =     35%FC   (2c) 
 
 

  1.0 =     5%FC   (3a) 

( )1.5  0.99  /1000FC = + 
 

  

5 <   35%FC   
(3b) 

  1.2 =     35%FC   (3c) 

 
The Fines Content (FC) shown in Table 1 is intended 
to accommodate the effect of fines content. They are 
consistent with the three classes of soils (FC ≤ 5%, 5 < 
FC <35%, FC ≥ 35%) considered in the Seed and 
Idriss [11] liquefaction evaluation procedure. 

 
Table 1 
Fines content indicator. 

Fines Content, FC (%) Fines Content Indicator, FCI 

FC ≤ 5 1 
5 < FC < 35 2 
FC ≥ 35 3 

 
Several methods have been proposed in the literature 
to predict the occurrence of liquefaction. Johari et al. 
[15] had research based on reliability assessment of 

liquefaction potential using the jointly distributed 
random variables method and aslo Johari et al. [16] 
investigated the reliability analysis of static liquefaction 
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of loose sand using the random Finite Element Method 
(FEM). Hanna et al. [17] proposed a method for 
developing the liquefaction potential based on General 
Regression Neural Network model (GRNN) analysis of 
field liquefaction performance records. Recently, Johari 
et al. [18] proposed a comparative study in reliability 
analysis of liquefaction potential of layered soil. In 
many of these methods, the empirical correlations were 
established to predict the occurrence or non-
occurrence of liquefaction at the site, by applying the 
field records and earthquake properties. The 
‘‘simplified procedure” is the most widely used method 
for the investigation of the liquefaction potential of 
sandy soils. In this method, the earthquake-induced 
cyclic stress ratio, CSR, is initially determined and then 
the cyclic resistance ratio, CRR, is calculated for the 
estimation of liquefaction potential. The factor of 
safety against liquefaction triggering of the soil at a 
specific depth is then defined as: 

7.5

7.5

CRR
FS

CSR
=  (4) 

It is noted that throughout this paper the terms CSR 
and CRR are referred to the reference earthquake 
magnitude of 7.5. If the value of safety factor, 
calculated by Eq. (4), for a particular case is less than 1, 
the occurrence of liquefaction is predicted, and on the 
other hand, if  FS > 1 then it is considered as a non-
liquefied case. 
The CRR is calculated based on (N1)60,cs. In the 
following relation, the amount of CRR is calculated for 
an earthquake with a magnitude of 7.5: 

1 60,

7.5 0.1

1 60,

( ) 0.739
  0.485 0.289[ ]

35 [35 ( ) ]

cs

cs

N
CRR

N
= − + +

−

 

(5) 

As the conventional liquefaction potential assessment 
profoundly relies on empirical correlations, the CSR 
was estimated using the general formulation of the 
simplified method. Since CRR is by definition, equal to 
the critical CSR, the following relation was 
implemented in this research: 

max

7.5

0.65 ( )( )

 = ( )

v
d

v

a
r

g
CSR

MSF



 
 

  
(6) 

Where amax is the peak horizontal ground surface 
acceleration, g is the acceleration due to gravity, σv is 
the total overburden stress at critical depth and σv′ is 
the effective overburden stress at critical depth. The 
parameter rd is the stress reduction factor that provides 
an approximate correction for flexibility of the soil 
profile. For a depth z of less than 23 m, the term rd can 
be calculated using the following equations: 

  1.0 –  0.00765dr z=  for   9.15 z m  (7a) 

  1.174 –  0.0267dr z=  for 9.15    23 z m    (7b) 

MSF is the magnitude scaling factor that accounts for 
the effect of earthquake magnitude, Mw): 

2.24
–2.56

2.56

10
  ( ) = ( )

7.5w

Mw
MSF

M
=  (8) 

Where w(z)=10-0.5z (z = depth in meters) and dz is the 
differential increment of depth. In this study the 
potential liquefaction categories proposed by Sonmez 
[19] was used, which defined FL as: 

  0LF =  1.2FS   (9a) 

  1  LF FS= −  0.95FS   (9b) 
6 18.427  2 10  FS

LF e=   1.2 0.95FS   (9c) 

In this study, a discretized form of the LPI given by 
Luna and Frost [20] was used for calculating the 
liquefaction potential on each borehole as follows:  

1

 
NL

i Li i

i

LPI w F H
=

=  (10) 

Where Hi is the thickness of the discrete layer and is 
determined by the SPT sampling frequency (Hi=0.1 m 
for this study); NL is the number of soil layers.  

Geostatistical modeling 

In-situ tests, in particular, can provide a good 
characterization of soil properties at the location where 
tests are performed, but inevitable uncertainty remains 
at locations that are not examined. As a solution, 
geostatistical approaches are applied in geotechnical 
engineering for assessing the effect of uncertainties in 
geotechnical predictions and quantifying the spatial 
variability of soil properties. The main purpose of using 
the geostatistical technique is providing the best 
estimate of the soil properties between known data, 
especially when sampling covers a very scarce portion 
of the total volume of soil [21]. 

Random field theory 

Soil is considered to be materials whose properties are 
related to spatial coordinates. In other words, the 
properties of this material type vary from point to 
point. It is not possible to use the typical statistics and 
probability methods based on the autonomy of the 
sample space. The use of random field theory to 
achieve the values at different points of the problem is 
presented as a solution to deal with this uncertainty. 
The theory of random field can effectively describe the 
spatial variability of soil properties by the correlation 
function. In fact, this theory is a prediction method 
based on the available general information, predicting 
the desired attribute for different points. In this 
method, the simulated properties of soil in very near 
points have nearly the same values as well as the 
independent values of the soil. 
Conditional simulation models are used to maintain the 
changes' texture and generate the real variation for the 
random variable. In the conditional simulation, the 
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generator algorithm must conclude the random 
variable's measured values in the sampling points. 
Conditional simulation techniques can be divided into 
direct methods and indirect methods. Indirect 
conditional simulation methods are used when the 
mean and variance of the random function are known 
and constant. In fact, this type of simulation is applied 
to the random function under static conditions of the 
second order. These methods are based on indirect 
simulation production that will be converted into a 
conditioned mode during phases. The direct simulation 
methods, such as sequential Gaussian simulation, are 
used when the average data is not constant. This type 
of simulation is applied to the random function under 
the inherent static assumption. The sequential Gaussian 
simulation method is considered as one of the best 
methods for producing the orientation of a multi-
multivariate Gaussian field which was implemented in 
this study. 

 

 

Steps in the proposed method 

In this study, a random field-based program was coded 
in MATLAB to discretize the domain into 87,500 
elements in both methods. Then, in the averaged index 
approach, the safety factor was calculated in the centre 
of each element at the borehole location using 
empirical relations. Next, the LPI was determined for 
each borehole. By considering LPI as a stochastic 
parameter, the surficial random field was estimated. 
Finally, all the procedures were put into the Monte-
Carlo simulation and repeat for 1000 times. The 
averaged results were presented as the final output. In 
the local soil property approach, the random field of 
SPT data were generated in a layer-by-layer sequence at 
every two meters. Then, the LPI determined for each 
elemental column in the model. These steps were 
repeated 1000 times in sense of Monte-Carlo 
Simulation. Again, the average LPI results were 
illustrated as the output of this approach. Flowcharts 
for the average index approach and the local soil 
properties approach are shown in Fig.1 and Fig.2, 
respectively.

 

  

Figure 1. Flowchart of the averaged index approach. Figure 2. Flowchart of the local soil property approach. 
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Case study 

A case study of coarse-grained soil is selected for the 
evaluation of liquefaction potential. To probabilistically 
predict the liquefaction potential based on conditional 
random field, MATLAB-based programming was 
prepared. The whole dataset consists of 40 entries of 
SPT, bulk density and fine-grained content data that are 
the most important parameters for evaluating 
liquefaction potential.  

Site location and geotechnical soil properties 

The site is on the Qeshm island of Iran, located in an 
urban area with an educational application. The site 
plan is shown in Fig.3. The main reason for selecting 
the site was that it mostly consists of coarse-grained 
soil located at a low-depth water table zone. In this 
situation, the liquefaction is the possible catastrophe 
for the soil systems under seismic load. 

 
Figure 3. Plan of site and boreholes location. 

 
To explore the subsurface layers, four boreholes were 
drilled to the depth of 20.0 m from the natural ground 
surface. As it is common in geotechnical projects, the 
boreholes are scattered distributed within the 

considered area. For each borehole the field test (i.e., 
SPT) and laboratory tests (i.e., grain size analysis, 
Atterberg limits tests and so on) were performed. The 
borehole database is given in Tables 2 to 5. 

 
Table 2 
Soil properties from BH.1 

Depth SPT Bulk density (kg/cm3 ) Fine-grained content (%) 

2 10 19.4 30.47 
4 11 19.4 60.22 
6 12 19.4 97 
8 10 19.6 98.8 
10 11 19.9 88.4 
12 15 20.2 61.71 
14 50 20.3 76.05 
16 50 21.6 76.32 
18 50 21.6 51 
20 50 21.6 79.56 

 
Table 3 
Soil properties from BH.2 

Depth SPT Bulk density (kg/cm3 ) Fine-grained content (%) 

2 5 19.3 95.72 
4 7 19.4 31.47 
6 5 19.5 99.55 
8 6 19.4 99.37 
10 11 19.4 87.67 
12 11 19.9 93.23 
14 28 20 95.9 
16 38 19.3 99.4 
18 50 19.3 99.25 
20 50 19.3 95.55 
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Table 4 
Soil properties from BH.3 

Depth SPT Bulk density (kg/cm3 ) Fine-grained content (%) 

2 8 19 57.51 
4 4 19 98.49 
6 3 19 94.96 
8 3 19.3 97.53 
10 2 19.5 99.46 
12 5 19.5 76.02 
14 18 20.1 71.67 
16 22 20.1 71.96 
18 35 21.1 69.43 
20 45 21.1 54.3 

 
 

Table 5 
Soil properties from BH.4 

Depth SPT Bulk density (kg/cm3 ) Fine-grained content (%) 

2 15 19.9 13.37 
4 13 19.9 39.25 
6 7 19.5 92.2 
8 5 19.9 77.59 
10 6 19.4 83.23 
12 9 19.5 91.01 
14 11 19 59.57 
16 22 19.5 96.65 
18 35 19 99.45 
20 45 19.5 95.55 

 

Results and discussions 

As a way to interpret the calculated probability of 
liquefaction, five classes of liquefaction potential are 
defined, as shown in Table 6. These definitions of 
liquefaction potential classes are suitable for describing 
the likelihood of the occurrence of liquefaction.  

Interpretation of liquefaction potential by means of the 
factor of safety is not as simple as that by means of the 
probability of liquefaction because the relation between 
the likelihood of liquefaction and the factor of safety is 
nonlinear. Thus, the interpretation of the calculated 
safety factor could be misleading if the concept or 
experience is extended to a different method [22].

 
Table 6 
Liquefaction potential index classification. 

Liquefaction potential index (LPI) Liquefaction potential classification 

0 Non-liquefiable 
0 < LPI ≤ 2 Low 
0 < LPI ≤ 2 Moderate 
0 < LPI ≤ 2 High 
LPI > 15 Very High 

 

At first, the average index approach was applied in the 
case study. Fig.4 shows the random field for one 
simulation of the calculated LPIs at four boreholes, 
using the average index approach. As shown in Fig. 4, 
most of the LPI at the BH.4 are greater than 20, and at 
BH.1 and BH.3, most of the LPIs simulated by this 
approach fall between 0 and 10, resulting in a sharp 
change in this range. 

In the second step of analyzing, the local soil properties 
approach was implemented. In this method, random 
field simulations are performed for each soil layer with 
a thickness of 0.2 m. Fig. 5 shows the average of SPT 
fields for one soil layer at 16 m below the ground 
surface. The entire model of average SPT fields across 
the site for all soil layers is also shown in Fig.6. 
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Figure 4. A conditional random field of one simulation for LPI parameters. 

 

 

 

Figure 5. The average of SPT fields for one layer at a depth of  
16 m. 

Figure 6. The entire model of average SPT fields 
for all soil layers. 

The generated LPI maps by average index and local soil 
properties approaches are illustrated as shown in Fig.7 
and 8, respectively. It can be seen that both approaches 
are able to capture the varying severity levels of 
liquefaction at most locations across the area of study. 

For instance, in both LPI fields, the high-value area 
which represents the very high liquefaction potential, 
corresponds well together. However, the results of the 
local soil property approach show more fluctuations.

  

Figure 7. The average LPI from the averaged index 
approach across the studied site. 

Figure 8. The average LPI from local property approach 
across the studied site. 
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Conclusion 

In this paper, a classical SPT-based empirical 
liquefaction model and the conditional random field 
techniques are integrated to assess regional liquefaction 
susceptibility. The study focuses on the spatial 
variability of SPT-based geotechnical parameters. Two 
approaches termed the averaged index approach and 
the local soil property approach, are analyzed to 
account for spatial variability of geotechnical 
parameters. Their implications on liquefaction 
susceptibility evaluation are discussed through one case 
study at the Azad University site in Qeshm island. It is 
concluded that the methods can identify the possible 
liquefaction location in which the area is determined 
based on the data contained in the borehole and the 
probabilistic analysis. 
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