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Introduction

ABSTRACT

The aging population presents a significant challenge in modern society, with an
increase in age-related diseases due to a longer life expectancy not matched by a
similar extension in healthy lifespan. This situation demands focused medical
research and healthcare advancements in treating aging-associated conditions. An
integrated approach is recommended, encompassing lifestyle changes, diet, and
mental and emotional health, to mitigate aging and its related diseases. In skin
health, innovative nanoparticle-based formulations are being explored to enhance
the anti-aging properties of active ingredients. Skin aging is influenced by intrinsic
factors like metabolic slowdown, disease, mitochondrial DNA damage, hormonal
changes, and extrinsic factors such as UV radiation, smoking, pollutants, and
lifestyle choices. These factors lead to skin issues like dryness, uneven texture, and
visible pores. UVB radiation and high blood sugar levels accelerate aging by
increasing oxidative stress and collagen damage. Antioxidants are crucial in
defending against reactive oxygen species (ROS). Nanoparticles, with sizes under
100 nm, include various types like carbon-based, inorganic, organic, and composite
nanomaterials. They are used in skincare due to their enhanced skin penetration
properties. These nanoparticles, both organic and inorganic, show promise as anti-
aging agents, working at different stages of the skin aging process. Understanding
the delivery mechanisms of anti-aging agents through the skin is key to creating
effective anti-aging products. Nanotechnology in cosmeceuticals integrates
biologically active ingredients with therapeutic benefits into cosmetics. This
technology addresses the limitations of traditional products by reducing patticle size
and improving ingredient efficacy. Nanocosmeceuticals are being developed for
anti-aging, sun protection, skin lightening, and hair growth.

Opverall, the article highlights the potential of gold nanotechnology in developing
effective and safe anti-aging strategies. Further research is warranted to explore the
long-term safety and efficacy of nanoparticle-based formulations for skin
rejuvenation and to optimize their delivery for enhanced therapeutic outcomes.
Keywords: Gold Nanoparticles, Anti-Aging, Skin Health, Cosmetic

escalating prevalence of age-related ailments in most
developed nations over recent decades [1].

The aging of the population poses a growing societal and
economic challenge in contemporary times. The
prolonged human life expectancy is not paralleled by a
similar extension of a healthy lifespan, leading to an
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Consequently, there is an urgent need for medical
research and the healthcare industry to prioritize the
development of treatment approaches specifically
addressing the pathways associated with aging [2-4].
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Researchers emphasize a comprehensive approach to
mitigating aging and age-related diseases involving
lifestyle modifications, dietary habits, mental well-being,
and emotional health. The demand for innovative
techniques in skin health has led to research exploring
nanoparticle-based formulations to enhance the anti-
aging properties of active ingredients [5]. The aging
process of the skin is attributed to intrinsic and extrinsic
factors. Intrinsic factors include metabolic slowdown,
disease states, mitochondrial DNA damage, and
hormonal activity. Extrinsic factors encompass UV
radiation, smoking, pollutants, and lifestyle choices,
leading to issues like dryness, uneven skin texture, and
increased visibility of pores. UVB radiation and high
serum glucose levels contribute to skin aging by
increasing oxidative stress and inducing collagen
fragmentation. Antioxidants play a crucial role in
defending against ROS through various mechanisms [0,
7].

Nanoparticles, characterized by dimensions smaller than
100 nm and diverse shapes [8], are classified into
categories such as carbon nanomaterials, inorganic,
organic, and composite-based nanomaterials. Notable
examples include nanotubes, fullerenes, quantum dots,
metals (silver, gold), metal oxides (titanium dioxide, zinc
oxide), and lipophilic NPs [9], which leverage their
advantageous properties for enhanced skin penetration
[10]. The efficacy of certain nanoparticles as potent anti-
aging agents is noted, and ongoing studies focus on their
skin-protective properties. Both organic and inorganic
nanoparticles are extensively utilized for their anti-aging
and skin-protective attributes, operating at various levels
of the aging process. Understanding the kinetics and
mechanisms of delivering anti-aging agents through the
skin is crucial for designing effective formulations for
anti-aging applications [11].

The article also touches wupon the field of
nanotechnology in cosmeceuticals, where biologically
active ingredients with therapeutic benefits are
incorporated into cosmetic products. Nanotechnology
addresses challenges associated with conventional
products, such as particle size and stability, by reducing
particle size and enhancing ingredient efficiency. Various
nano cosmeceuticals, including solid lipid nanoparticles,
nanostructured lipid carriers, and gold and silver
nanoparticles, are explored for their anti-aging purposes
[12, 13]. NPs serve vatious functions, such as
antioxidants and anti-reflective agents. For instance,
titanium dioxide NPs are used for their wp) hite pigment
properties in creams, silver NPs are included in
shampoos and toothpaste formulations [14], and gold
nanoparticles as potential antioxidant agents with low
cytotoxicity and good cell permeability. These
antioxidant AuNPs, mostly derived from plant extracts,
are explored for their efficacy in counteracting the aging
process [15, 16].

In vascular aging and related disorders, age stands out as
the primary risk factor. Aging-induced changes in
vascular structure, functions, and phenotypes play a
central role in the onset and progression of various
vascular aging-related diseases, including cardiovascular,
cerebrovascular, and kidney diseases [17, 18].
Pathological alterations associated with aging are closely
linked to vascular disorders involving molecular and
cellular events, such as cell proliferation, migration,
inflammation, apoptosis, angiogenesis, and thrombosis,
all contributing to vascular cell senescence [19, 20].
Nanoparticles designed for diagnostics and therapeutics
play a pivotal role in augmenting both diagnostic and
therapeutic  efficiencies, thereby mitigating the
occurrences and magnitudes of side effects. This is
achieved through heightened drug accumulation at
pathological sites and concurrent reduction of drug
accumulation in healthy tissues [21, 22].

Despite their potential benefits, the use of NPs raises
concerns about toxicity. Research indicates that
exposure to NPs can lead to the production of reactive
oxygen species (ROS) and result in cytotoxic and
genotoxic effects. Various factors, including chemistry,
dosage, particle size, shape, and surface characteristics,
influence the cytotoxic impact of the NPs [23]. Despite
these concerns, the advantages of NP use outweigh the
potential drawbacks, as emphasized in recent literature
[24].

This article underscores the versatile applications of gold
nanoparticles in anti-aging skin care, cosmetics, anti-
aging formulations, and cosmeceuticals. Ongoing review
focuses on gold nanoparticle characteristics and
understanding their mechanisms for effective anti-aging
interventions.

Gold Nanoparticles: A Scientific Exploration,
Diverse Structures

Among all nanoparticles utilized in experimental studies,
Gold Nanoparticles (GNPs) stand out as the most
efficient due to their low systemic toxicity. GNPs have
been extensively researched for their use in cancer
therapy. They have various therapeutic applications in
the medical field, including photothermal therapy,
radiotherapy sensitization, imaging properties, and
targeted drug delivery. What makes them suitable for
these applications are their optical properties. Gold
represents a system with an equal number of positive
ions (stationary) and conducting electrons (free and
mobile) [25]. Thus, when an electromagnetic wave
impinges upon the metal surface, the oscillating electric
fields of the wave interact with the free electrons,
causing surface electrons to oscillate in resonance with
the visible light frequency. The free electrons are driven
by the electric field to oscillate coherently. These
collective oscillations of free electrons are referred to as
'plasmons,’ and the oscillations of surface electrons as
'sutface plasmons.' Surface plasmons interact with
visible light, resulting in a phenomenon known as
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'Surface Plasmon Resonance' (SPR). The SPR
phenomenon leads to the formation of strong
electromagnetic fields on the surface and enhances GNP
properties such as absorption, scattering, and light-to-
heat conversion.

For medical imaging purposes, larger GNPs are
preferred due to their better light-scattering properties.
At the same time, smaller nanoparticles are used more in
photothermal therapy due to their higher efficiency in
converting light to heat [26]. Furthermore, the
intracellular distribution of GNPs in various cellular
compartments and their toxicity is determined by their
size, morphology, and surface properties. GNPs can be
engineered into shapes like spherical, semi-spherical,
star-shaped, rod-like, branched, etc. [27]. GNPs can be
produced in large quantities, with specific shapes and
sizes. They can also be synthesized directly by reducing
gold salts using physical, chemical, and green methods.
The size of GNPs plays a crucial role in how the
nanoparticles are internalized by cells and in their
cytotoxic effects on cells.

The most toxic GNPs are those with smaller sizes (1 to
2 nanometers), exhibiting toxicity to both malignant and
healthy human cells. Larger GNPs (4.8 to 12
nanometers) possess significant toxicity to cancer cells
but have less toxicity to healthy cells, while GNPs larger
than 15 nanometers are considered non-toxic [27]. In
some cases, GNPs attract specific proteins, leading to
their instability, but this is usually prevented by coating
them with a layer of dendrimer, polylysine, PEI, or
biocompatible hydrophilic polyethylene glycol. Another
issue is that upon entering an organism, they might be
sequestered by macrophages and other cells of the
reticuloendothelial system (RES). Since foreign particles
are absorbed by the RES, to prevent GNPs from being
sequestered inside the body by RES cells, the
nanoparticles should not be allowed to remain within the
organism for an extended period, with the size of the
nanoparticles playing a significant role in this regard. It
has been observed that smaller particles, compared to
larger nanoparticles, have a significantly longer lifespan
in the bloodstream [27]. The most common sites of
GNP impact ate the nucleus, mitochondtia, and
endoplasmic reticulum. At the nuclear level, GNPs work
with drug toxicity, modulation of gene expression, or
direct toxicity.

In contrast, at the mitochondrial level, GNPs cause
changes in membrane potential, ROS production, and
activation of autophagy [28]. In 1857, Michael Faraday
made a pioneering discovery in nanotechnology when he
uncovered the light-scattering properties of suspended
gold nanoparticles, a phenomenon now recognized as
the Faraday-Tyndall effect [29]. Approximately fifty
years later, Hirsch et al. identified the unique ability of
gold nanoparticles (GNPs) irradiated at an
electromagnetic wavelength of 820 nm to elevate
surrounding temperatures, a property with significant
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implications for the solid tumor therapy [30]. In a
landmark approval in July 2019, the United States Food
and Drug Administration (FDA) endorsed an oral drug
based on CNM-Au8 (developed by Clene
Nanomedicine, Inc.) for treating Amyotrophic Lateral
Sclerosis (ALS) [31]. Consequently, GNPs have emerged
as a reliable and potent tool in therapeutic interventions.
Over the past two decades, extensive research has been
conducted on GNPs in various forms, including nano-
clusters [32], nano-rods [33], nano-sheets [34], nano-
shells [35], nano-cages [30], and nano-stars [37]. Their
roles in combating different diseases have been a
particular focus.

Gold Nanoparticles Anti-Aging Skin Care: Drug
delivery, skin penetration, and Antibacterial
properties

The epidermis, being the body's most expansive organ
and directly exposed to environmental elements,
undergoes aging influenced by both internal and external
factors [38]. This aging process manifests through skin
dehydration, diminished elasticity, and wrinkle
formation [39]. The increasing societal emphasis on
aesthetic standards has heightened the focus on skin
aging, especially as populations worldwide are aging,
thus amplifying the psychosocial impacts and
underscoring the need for efficacious treatments [40]. In
this scenario, there has been a notable rise in the
employment of nutraceuticals as dietary enhancements
[41].

Collagen, which constitutes 80% of the skin's dry weight,
is a primary structural protein in various connective
tissues [42]. Its unique triple helical structure, comprising
a glycine repeat every third residue and interspersed with
proline and hydroxyproline, is a defining feature [43]. As
a major component of the extracellular matrix, collagen
not only provides structural support but also guides
tissue development [44].

With aging, there is a notable decrease in the enzymes
responsible for collagen's post-translational processing,
leading to reduced collagen synthesis by fibroblasts and
diminished vascular supply to the skin [45]. The age-
related deterioration in skin quality is marked by
decreased collagen production and lower skin
vascularity, culminating in reduced elasticity and wrinkle
formation [46]. These alterations are attributable to the
reduced activity of fibroblasts and a lesser number of
blood vessels in the skin [47]. Consequently, the skin
experiences regressive alterations, including
dehydration, reduced epidermal thickness, and loss of
elasticity [48]. To combat these changes, various
nutritional and supplementary strategies have been
adopted to enhance preserve a youthful appearance and
skin health [49]. These methods encompass collagen
supplements, topical creams, and injectable fillers. While
topical creams incorporate collagen for improved skin
hydration and firmness, their limited skin penetration
may diminish their efficacy [50]. Injectable fillers like
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hyaluronic acid stimulate collagen production and offer
immediate skin-plumping effects, but they are costly and
carry risks like bruising and infection [50]. Alternatively,
collagen supplements, especially those containing
hydrolyzed collagen peptides, are recognized for their
safety, cost-effectiveness, and ease of oral intake [51].
Among these supplements, hydrolyzed collagen (HC)
stands out as the most favored and effective anti-aging
nutraceutical for the skin [52]. Studies have revealed the
presence of serine—hydroxyproline—glycine and alanine—
hydroxyproline—glycine in human blood within an hour
of HC ingestion [53, 54], indicating deposition in the
skin [55]. Recent research confirms HC's beneficial
effects on skin elasticity and hydration [52]. However,
not all HC sources are equally efficacious, with variations
in effectiveness observed even at identical dosages and
treatment durations [56]. This highlights the need for
further research to identify optimal HC sources and
treatment durations for combating skin aging.

Gold Nanoparticles as Drug Delivery Systems

The human skin, as the largest organ, serves not only as
a critical protective barrier but also as a vital medium for
drug administration, facilitating both topical and
systemic therapeutic effects. However, the inherent
barrier function of the skin poses a significant challenge,
limiting the penetration of many drugs, especially those
with high hydrophilicity or substantial molecular weight,
at therapeutic levels [57-59]. In response to this
impediment, the advancement of nanocartier-mediated
delivery systems has emerged, revolutionizing the
landscape of dermatological drug delivery [60, 61]. These
systems encompass a diverse array of technologies,
including lipid-based colloidal nano-systems, polymeric
nanopatticles/micelles, metallic nanocartiers, carbon-
based nanomaterials, and nano-gels, each offering
unique benefits [59].

Among these, metallic nanocarriers, particularly gold
nanoparticles (GNPs), have garnered extensive attention
due to their inherent advantages, such as robust stability,
consistent  particle size  distribution, adjustable
morphology, and facile surface functionalization
capabilities, making them highly suitable for a range of
medical applications [62]. GNPs have been extensively
researched for their potential as drug-delivery agents,
diagnostic tools, and therapeutic agents [63]. Their
compatibility with biological systems and minimal
toxicity, coupled with a large surface area amenable to
functionalization with biomolecules through physical
adsorption or with reactive groups (like amine, thiol, and
carboxyl groups) through ionic or covalent bonding for
ligand or antibody modification, further enhance their
applicability [64, 65]. Additionally, GNPs can be
engineered into various shapes and sizes (ranging from
1 to 100 nm), which is advantageous for circumventing
biological barriers [606].

GNPs are distinguished by their unique optical
properties, primarily due to localized surface plasmon

resonances (LSPR) - a phenomenon involving the
collective oscillation of surface-free electrons at resonant
frequencies, enabling interaction with light. These
properties are leveraged in applications such as imaging,
sensing, and photothermal transition, setting them apart
from other nanomaterials [67]. Given the skin's
accessibility, GNPs present a promising avenue for
developing multifunctional systems in skin drug delivery.
Skin penetration

The exploration of material penetration through human
skin holds paramount importance, particularly for the
advancement of transdermal drug delivery systems. In
these systems, drugs bypass the gastrointestinal tract and
liver, entering directly into systemic circulation via the
skin. This route offers distinct advantages, including
circumvention of first-pass metabolism, enhanced
pharmacokinetics, and improved patient compliance
[68]. Despite a surge in demand for transdermal patches
over the past two decades, the number of drugs
effectively utilized in these systems remains limited,
primarily due to the skin's inherent barrier function,
which impedes the penetration of most compounds [69].
The skin, primarily through its outermost layer, the
stratum corneum (SC), acts as a formidable barrier,
effectively restricting the penetration of small molecules
[70]. Unlike systemic drug delivery, topical applications
target conditions affecting the skin without requiring
drug entry into the systemic circulation [71]. However,
for conditions affecting deeper skin structures like
sebaceous glands and hair follicles — pertinent in
disorders like alopecia, acne, and rosacea — deep skin
layer penetration is crucial [72].

Skin permeation can occur via intracellular, extracellular,
or trans-follicular routes, the first two being constrained
to lipophilic drugs with certain molecular characteristics
[73, 74]. Trans-follicular delivery, utilizing the unique
anatomy of hair follicles as conduits to deeper layers, has
spurred the development of novel transdermal methods
[75, 76]. Nanoparticles have revolutionized drug
delivery, enhancing stability, efficacy, and selectivity.
Their fabrication utilizes various materials tailored for
specific pharmaceutical roles [77]. For instance, PEG-
coated liposomes are employed for prolonging the half-
life of antibacterial drugs [78], while biodegradable
polymers are utilized in chemotherapy, optimizing drug
targeting and reducing nonspecific cellular uptake [79].
Nanoparticles have shown superior follicular
penetration compared to their free small-molecule
counterparts, promoting the development of follicle-
targeting nanocarriers for efficient systemic drug release
[80-82]. This approach is potentially advantageous for
both topical and systemic therapies, including targeting
specific cells like melanocytes and epithelial stem cells
involved in pigmentation and regeneration [83]. Particle
size plays a pivotal role in follicular penetration, with
specific ~ submicron  sizes  showing  enhanced
accumulation [84]. Physical properties, including particle
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shape and surface texture, are also hypothesized to
influence follicular penetration, although systematic data
is required [85]. While the therapeutic benefits of
nanoparticle skin penetration are evident, potential
adverse effects raise safety concerns. Certain
nanoparticles, like those containing Fe304 and ZnO,
may harm the skin barrier, while Ag nanoparticles could
affect collagen synthesis and cellular viability [86]. The
safety implications of nanoparticle use, particularly on
impaired skin, are increasingly scrutinized by both the
scientific community and regulatory bodies like the U.S.
Food and Drug Administration [87]. The interactions
between nanoparticles and skin, including the risks of
transdermal flux into the bloodstream, are areas of
ongoing investigation [88]. The impact of nanoparticle
shape on skin penetration, in particular, requires further
research to inform safer product design in medicine and
cosmetics [89].

In recent research, investigators delved into the
influence of nanoparticles' physical characteristics,
specifically size and shape, on skin penetration via hair
follicles. Using gold nanoparticles (GNPs) as a model
due to their controllable size and shape, they investigated
various morphologies without altering their composition
[90, 91]. The reseatrchet's fabrication technique, based on
the seed and grow chemical reaction, yielded GNPs in a
size range of 10-250 nm, with a focus on 100-200 nm
particles due to the heterogeneity in larger sizes [92-94].
To evaluate nanoparticle skin penetration, researchers
developed the Follicular Transversal Segmentation
(FTS) method, a novel assay providing quantitative data
on follicular transport. Using transverse histological
sectioning, FTS offers a precise assessment of follicular
penetration depth. Their findings indicated that GNPs
within the 100-200 nm range demonstrated optimal
follicular penetration. The method confirmed that
particles with increased anisotropy and complex surfaces
accumulated more effectively in sebaceous glands and
hair follicles, as demonstrated with variously structured
labeled GNPs [95].

Antibacterial properties

Bacterial infections, prevalent in various degrees of
severity among humans, have historically been
combated using antibiotics. These pharmaceutical
agents have saved innumerable lives [96-98], but their
effectiveness is increasingly compromised due to the rise
of drug-resistant strains  [99, 100]. This growing
resistance is a significant public health concern,
prompting the need for innovative therapies that differ
from conventional antibiotics [101, 102].

The human skin, a protective barrier for internal tissues
and organs, is susceptible to bacterial invasions. Skin-
related bacterial infections are particularly problematic in
wound healing, especially in burn victims and individuals
with chronic diseases like diabetes [103-107].
Predominant bacteria in skin and soft tissue infections
(SSTIs) include Staphylococcus aureus and Escherichia
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coli, with a worrying trend of resistance to common
antibiotics observed in these pathogens [108]. For
instance, a study identified ampicillin resistance as the
most common in 102 E. coli strains isolated from SSTI
patients, followed by resistance to tetracycline and
fluoroquinolones [109].

Antimicrobial peptides (AMPs) are known for their high
efficiency and broad-spectrum activity against bacteria,
surpassing traditional antibiotics in some aspects.
However, they face challenges such as low stability, brief
serum half-life, and poor permeability through biological
barriers, limiting their use in antibacterial treatments
[110, 111]. Nanomaterials, employed as carriers for
AMPs, can address these limitations and facilitate multi-
mechanistic antibacterial approaches [112, 113]. For
example, Piras and colleagues demonstrated prolonged
antibacterial activity against Staphylococcus epidermidis
in vitro using AMPs loaded onto chitosan nanoparticles
[114]. Gold nanoparticles (AuNPs) are particularly
noteworthy among various nanoplatforms for their
biocompatibility and significant antibacterial properties
[102, 115, 116]. Small-molecule-capped AuNPs, as
reported by Jiang et al., have shown potent antibacterial
effects against Gram-negative bacteria [117].

Role of Nanostructured in Cosmetics

Beyond their traditional roles in enhancing beauty
through products like perfumes and nail and hair care,
cosmetics have evolved to encompass skin protection,
lightening, moisturizing, acne treatment, and anti-aging
properties [118]. This evolution has led to the integration
of active pharmaceutical ingredients (APIs) into
cosmetic products, giving rise to the concept of
"cosmeceuticals" [119]. A 2022 MDPI report indicates
that cosmetics prescriptions now constitute 40% of all
global dermatology prescriptions, highlighting a growing
consumer preference for multifunctional personal care
products [120].

Cosmetic formulations are increasingly designed to be
not only aesthetically appealing but also functionally
effective [121]. For example, the use of fragrances and
essential oils in cosmetics has surged, particularly in
response to the psychological stress associated with the
COVID-19 pandemic, boosting demand for such
products [122]. Advanced nanotechnology has been
extensively employed to enhance the efficacy and safety
of drug delivery, particularly in terms of skin distribution
and the development of insoluble medications [123].
The cosmetics industry has been at the forefront of
incorporating nanotechnology principles into product
development [124, 125]. This innovation has led to over
500 registered products that improve drug delivery while
maintaining skin integrity [126]. However, concerns
have been raised about the potential risks associated with
nanomaterials in cosmetics, such as skin irritation,
sensitivity, and systemic exposure issues [127, 128].
Addressing these challenges may involve the use of
straightforward and efficient nanoparticles.
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Nanoparticles have garnered significant interest and
application across various fields, including medicine,
environmental science, and cosmetics, owing to their
unique  properties  [129-131].  The  European
Commission has defined nanomaterials as particulate
substances, whether naturally occurring, incidental, or
manufactured, where 50% or more of the particles in the
number size distribution have at least one external
dimension within the 1-100 nm range [131].

In the realm of nanoparticle synthesis, two distinct
methods have been documented [132]. One involves
using the hydrosoluble crude extract of medicinal plants,
leading to the formation of nanoflower-shaped particles.
The other method utilizes the total of flavonoids,
resulting in  smaller, monodispersed  spherical
nanoparticles. The type and proportion of
phytochemical fractions play a crucial role in
nanoparticle formation. Specifically, Hubertia ambavilla,
a plant rich in flavonoids, tannins, proanthocyanidins,
and carbohydrate complexes, has been noted for its
potential anti-inflammatory and healing properties,
along with other therapeutic benefits for conditions like
renal infections, asthma, and diabetes [133-135].

Gold nanoparticles, in particular, have found
applications in the cosmetic industry. They are used in
products such as skin wound disinfectants and creams
for anti-inflammation and anti-aging purposes. The skin
is constantly exposed to various damaging factors like
pollution, ultraviolet (UV) rays from the sun, and
cigarette smoke, all of which contribute to the
production of reactive oxygen species (ROS). An
overabundance of ROS can induce oxidative stress,
causing damage to cells, DNA, and proteins. This
oxidative stress accelerates skin aging by increasing the
expression of matrix metalloproteinases (MMPs), which
degrade collagen and elastin [136]. Therefore, providing
the skin with additional antioxidants is essential for
enhancing its natural protective mechanisms against
oxidative stress [137].

Characterizing Nanoparticles in Cosmetics
Nanoparticles (NPs) in cosmetics are categotized into
two groups based on their physicochemical
characteristics: 'soluble/biodegtadable’ and
insoluble/non-biodegradable’ NPs. The former
includes nanoemulsions, solid lipid nanoparticles,
nanostructured lipid carriers, and liposomes [128, 138,
139]. The latter encompasses carbon black, metals,
quantum dots, metal oxides, and fullerenes [128, 138,
139], defined by EU regulation (N°1223/2009) as
intentionally manufactured materials with dimensions in
the 1-100 nm range [140]. These insoluble, stable
nanoparticles are recognized as nanoproducts with
potential safety concerns for consumers, as they can
enter the body through skin, inhalation, and ingestion
[128, 140, 141]. Particular attention is given to the
inhalation risks from spray cosmetics and the incidental
ingestion of lip and oral care products containing NPs

[140, 142]. Only a few NPs, like zinc oxide, titanium
dioxide, and carbon black, are approved by EC
regulations as UV filters in cosmetics due to their inert
toxicity and stability [140].

Moreover, the environmental impact of these NPs,
particularly those used as UV filters like TiO2, is a
growing concern. These NPs can accumulate in aquatic
environments, leading to detectable and potentially toxic
concentrations [140, 143-145]. The need for further
research on their environmental fate and biological
effects is critical for developing appropriate regulations.
Current analytical methods for monitoring NPs in the
environment are diverse and still improving [146], and
their lifecycle effects must be considered [143-145].
The chemical characterization of NPs in cosmetics is
crucial for the industry, not only for product
performance but also for understanding their toxicity
and environmental impact. The ISO/TC 229 technical
committee  recommends  characterizing  various
parameters like size, distribution, concentration,
composition, and more [140]. Analytical techniques
vary, and the complexity of cosmetic matrices poses
challenges in sample preparation, requiring a balance
between reducing complexity and maintaining
representativeness [147].

Safety and Environmental Impact of Insoluble
Nanoparticles in Cosmetic Products

Vatious insoluble nanomaterials (NMs) are commonly
utilized as key components in cosmetic and personal
care products. These include carbon black, metallic
nanoparticles (NPs) like silver and metal oxides, and
gold such as titanium dioxide, silica, and zinc oxide [128,
138, 139]. Carbon black nanoparticles, with an average
size range of 10-100 nm, are primarily used for coloring
in eye makeup products, with concentrations up to 10%
[140]. These nanoparticles are considered safe for use in
the European Union (EU) when they are 20 nm or larger
and do not exceed a 10% concentration [141, 148]. Silver
nanoparticles are known for their antibacterial qualities
and are utilized in various cosmetic products, although
their use is restricted in certain applications by
EC/1223/2009 cosmetic tegulations [149-151]. Gold
nanoparticles are employed in cosmetics for their
antioxidant properties and targeting skin aging and
wounds [152-154].

Among metal oxide nanoparticles, titanium dioxide
(T102), silica (Si02), and zinc oxide (ZnO) are the most
prevalent in cosmetics. Silica nanoparticles are used for
their hydrophilic nature and ability to enhance the
effectiveness of toothpastes, while their safety is still
under  scrutiny  [154-157].  Titanium  dioxide
nanoparticles are effective as UV filters in sunscreens
and other personal care products, but EU regulations
restrict their use as colorants in cosmetics. Zinc oxide
nanoparticles, recognized as safe by the EU SCCS and
the FDA-USA, are used for their UV filtering
capabilities [140].
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However, concerns regarding the safety of TiO2 and
ZnO nanoparticles have been raised, particularly in
relation to their photoreactivity and potential to produce
reactive oxygen species (ROS) [158]. These issues have
been mitigated by coating the nanoparticles with
materials like AI203 or SiO2. Studies suggest that these
nanoparticles largely remain on the skin's surface after
application and do not penetrate deeper skin layers [140].
The environmental impact of these nanoparticles,
especially TiO2, is also a significant concern. Their
release into water bodies can affect aquatic ecosystems,
and various physicochemical factors influence their
behavior in these environments. The surface properties
of these nanoparticles can change under different
environmental conditions, potentially leading to
ecological risks [159].

Conclusion

The battle against aging has captivated humanity for
millennia, and with scientific advancements, innovative
weapons are emerging in this timeless fight.
Nanotechnology, the manipulation of matter at the
atomic and molecular level, promises a revolution in
anti-aging strategies, offering targeted solutions for both
intrinsic and extrinsic causes of skin aging. While
wrinkles, dryness, and sun damage may paint the visible
tapestry of aging, the underlying canvas comprises
complex cellular processes. Intrinsic factors like
metabolism, DNA damage, and hormonal changes
orchestrate the internal symphony of decline. Extrinsic
factors, from sun exposure to pollutants and even bad
habits, add their discordant notes to the score.
Nanoparticles, miniscule actors on this cellular stage,
hold the potential to rewrite the aging narrative. Their
small size grants them unique access, bypassing skin
barriers to deliver potent anti-aging agents directly to
their targets. Imagine antioxidants mopping up free
radicals like miniature janitors, or collagen-boosting
peptides weaving their magic at the source of wrinkle
formation. Nanoparticles can encapsulate these active
ingredients, enhancing their stability and effectiveness
while minimizing side effects.

The arsenal of these microscopic warriors is diverse.
Green synthesis of gold nanoparticles derived from
natural materials offers biocompatibility and targeted
delivery, while inorganic nanoparticles like chemical gold
and silver lend their inherent anti-inflammatory and
antimicrobial properties. Combined, they offer a
synergistic orchestra of rejuvenation, targeting different
aspects of the aging process. Nanotechnology also
revolutionizes cosmeceuticals, infusing conventional
creams and serums with nano-empowered ingredients.
The result? Products with improved penetration,
enhanced stability, and targeted action, minimizing waste
and maximizing results. From sun protection to skin
lightening, hair growth, and even wound healing, the
scope of applications is vast. However, this journey to
the fountain of youth with nanotechnology requires

cautious navigation. Long-term safety and efficacy
studies ensure these microscopic allies remain true to
their benevolent purpose. Understanding the intricacies
of nanoparticle behavior and optimizing their delivery
mechanisms will further unlock their potential.
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