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ABSTRACT 

Existing rock mass parameters, such as uniaxial compressive strength (UCS), rock 
quality designation (RQD), and distance between planes of weakness (DPW), are 
being widely used in the prediction of TBM performance in various hard rock 
conditions. In this paper, these factors are considered as input parameters to 
estimate the rate of penetration (ROP) based on 180 compiled data from two 
projects including the Queens water tunnel lot 3, Stage 2 in USA and Karaj-
Tehran water transfer tunnel in Iran. This study aims to evaluate the influence of 
rock mass parameters on TBM performance and develop a new empirical 
equation to estimate ROP using multivariate regression analysis and artificial 
intelligence algorithms. In this regard, by taking advantage of machine learning 
algorithms, two types of artificial intelligence techniques, including particle swarm 
optimization (PSO) and radial basis function network (RBF), have been employed 
to develop predictor networks to estimate TBM performance. To explain the 
relationships among rock mass parameters and ROP and to offer new empirical 
equations, regression analysis is also utilized. The proposed models have been 
validated based on the various machine learning loss functions including, MAD, 
RRSE, rRMSE, MSE, MAPE, and sensitivity analysis. The obtained results 
demonstrate that the calculated values are in good agreement with the actual data. 

Keywords: TBM performance, Penetration rate, Machine learning, Rock mass 
properties 

Introduction 

Tunnel boring machines (TBM) are widely used in 
tunnel construction in hard rock conditions. 
Mechanized tunneling is considered for excavation in 
various ground environments due to its higher speed, 
lower risk, and higher efficiency and safety. However, 
complicated geomechanical conditions can affect the 
efficiency and performance of the machine. Among 
various TBM performance parameters, the rate of 
penetration (ROP) is very important in the analysis and 
optimization of performance. Therefore, in this 
research, an attempt was made to find suitable 
relationships between ROP and key rock mass 
parameters including, uniaxial compressive strength 
(UCS), rock quality designation (RQD), and distance 

between planes of weakness (DPW) to provide a 
prediction model for similar conditions. The machine 
specifications such as cutterhead and disc cutter 
diameter are fixed during tunnel construction. So, they 
cannot be used as an input in the soft computing 
techniques for developing new empirical models. 
The predictor networks have developed to estimate the 
TBM performance in hard rock conditions, including 
the penetration rate and advance rate, using the soft 
computing method and artificial intelligence 
techniques, which are well-known due to their accuracy 
and efficiency, their strong predictive authority, and 
using numerous range of parameters in the determined 
network’s database [1-6]. 
For instance, Benardo and Kaliampakos (2004) 
employed an artificial neural network (ANN) to 
estimate TBM advance rate in hard rock conditions 
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using rock specifications, including RQD, weathering 
degree, RMR, permeability, and hydrological condition 
[7]. In another example, the advance rate and 
penetration rate of TBM tunneling were investigated 
by Yagiz and Karahan (2015) using PSO soft 
computing technique. In this prediction, the input 
parameters divided into three categories, including 
operating parameters (thrust force, cutterhead rotation 
speed), rock mass properties (core fracture frequency 
(CFF), and uniaxial compressive strength (UCS)) and 
disc cutter’s diameter as of the major machine 
specifications [8]. Gao and Li (2015) have executed the 
partial least squares (PLS) and support vector machine 
(SVM) methods to predict penetration rate considering 
five-rock mass parameters including, UCS, peak slope 
index (PSI), Brazilian tensile strength (BTS), the 
distance between the planes of weakness (DPW) and 
angle between the plane of weakness (α) [9]. Shao et al. 
(2013) employed an extreme learning machine (ELM-
AI) to calculate the penetration rate based on the rock 
mass properties, including α, DPW, UCS, and PSI [10]. 
Jinhuili et al. (2021) have applied a long-short term 
memory recurrent neural networks (LSTM-RNN) 
technique to measure the operational parameters, 
including torque and thrust of the TBM in a real-time 
manner with consideration of rock mass classification 
and rock mass grade [11]. Samadi et al. (2021) employed 
an artificial neural network (ANN) and support vector 
machine (SVM) to estimate maximum surface 
settlement caused by EPB machine in urban areas 
based on the collected 50 data [12]. Samadi and 
Hassanpour (2020), have performed the GRU-RNN 
network for estimation of the chamber pressure based 
on 4180 collected data [13]. Farrokh et al. (2012) 
investigated several models to estimate TBM 
penetration rate [14]. Farrokh (2012) collected and 
compiled information for 300 tunnel projects, including 
rock properties, TBM specifications, TBM operational 

parameters, and achieved performance to look for 
considerable correlations between these parameters 
[15]. 
This study aims to employ two predictor models 
including, particle swarm optimization (PSO) and radial 
basis function network (RBF), and multivariable 
regression analyses for developing empirical models to 
predict the TBM penetration rate based on a database 
developed by collecting required data from the Queens 
water tunnel lot 3, Stage 2 in the USA and Karaj-Tehran 
water transfer tunnel in Iran. These tunnels have been 
constructed using hard rock TBMs. The obtained 
results of models were evaluated using the superior loss 
functions of machine learning. 

Project Description 

To verify the predictability of the PSO and RBF-based 
ROP prediction model proposed herein, these models 
were applied in two tunneling projects excavated by 
hard rock TBMs. The main characteristics of these two 
TBM tunneling projects are summarized in Table 1. 
The Queens water tunnel passes through five rock 
types, including gneiss, orthogneiss, amphibolite, 
granitic gneiss, and rhyodacite dyke. The gneiss unit is 
the most dominant rock type encountered along the 
tunnel alignment, with a 41% percentage. Also, the 
rhyodacite dyke has less percentage encountered along 
the tunnel (2.5%) (Figure 1, a). The location of stage 
two of Queens tunnel no. 3, New York City, is 
indicated in Figure 1, b [16]. This tunnel has a diameter 
of 7.06 m and a length of 7.5 Km. The torque and 
thrust values of the cutterhead at a maximum rotation 
speed of 8.3 RPM are 3620 kN.m and 15592 KN, 
respectively. The TBM cutterhead is equipped with 50 
disc cutters in the central and peripheral parts [17].

 
Table 1 
Characteristics of tunneling projects 

 
No. 

 
Project 

Tunnel 
length (km) 

TBM 
type 

TBM type and 
manufacturer 

TBM 
diameter (m) 

Overburden 
(m) 

 
1 

Queens water tunnel 
lot 3, Stage 
2 (USA) 

 
7.5 

 TBM 235-282 
(Robbins) 

 
7.06 

 
200 

 
2 

Karaj-Tehran water 
transfer tunnel (Iran) 

 
30 

Double 
shield 

TBM-S323 
(HERRENKNECHT) 

 
4.65 

 

 
In Karaj-Tehran water transfer tunnel project, the data 
sets related to geomechanical conditions and machine 
specifications were collected during the pre-
construction and construction phases. This line is 
located in the northwest of Tehran, which connects the 
KWC dam to Tehran, through a 30 km tunnel with a 
diameter of 4.65 m, with 12 stations. The excavation 
process has been accomplished using a TBM-S323 

manufactured by HERRENKNECHT. The torque and 
thrust values of the cutterhead at a maximum rotation 
speed of 11 RPM are 1029 kN.m and 169.3 KN, 
respectively. The TBM cutterhead is equipped with 31 
disc cutters in the central and peripheral parts. 
The collected dataset was derived in the range of 1500 
segmental rings with a width and thickness of 1.5 
meters. This tunnel is  located  mainly  through  four  
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rock  types, including siltstone and sandstone, siliceous 
tuff and green vitric, lithic tuff, and micro 

conglomerate. A geographical situation of the project is 
presented in Figure 2. 

 

 
(a)                                                            (b) 
 
 

 

Figure 1. (a): Percentage of various rock units encountered along the tunnel alignment, (b): Location of stage two of 
Queens tunnel no. 3, project area in New York City (b: [16]) 
 
 

Figure 2. Location of Karaj-Tehran water transfer tunnel, Iran 
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Database Development 

The geomechanical properties of the projects noted 
above were studied in both field and laboratory to 
establish the database required to develop predictive 
performance models. Three rock mass parameters are 
identified as influential parameters for the TBM 
penetration rate including RQD, UCS, and DPW. In 
general, all of these three independent parameters play 
critical roles in the variation range of TBM 
performance. Statistical characteristics of the 

parameters recorded in the database are summarized in 
Table 2. Also, the histograms and distribution curves of 
rock characteristics and TBM penetration rate recorded 
in the database are indicated in Figure 3. 
In this study, the collected data was divided into two 
categories. 85% (153 samples) were randomly selected 
for training the network, and the remaining dataset (28 
samples) were considered the test data to evaluate the 
training process.

 

(a)                                                  (b) 

 
 
 
 
 
 
 
(c) 

 
 
 
 
 
 
 
(d) 

Figure 3. Distribution curve and frequency histogram of rock mass parameters and penetration rate in the database 
 

Table 2 
Summary results of descriptive statistical analysis of parameters recorded in the 
database 

Parameter Categ. Min. Max. Ave. St.D Var. Skew. Kurt. Med. 

ROP Output 1.27 5.8 2.18 0.61 0.37 2.76 13.8 2.08 
RQD Input 40.6 99.8 91.07 15.28 233.5 -1.75 1.8 99.28 

DPW Input 0.05 2 0.87 0.67 0.45 0.41 -1.33 0.8 

UCS (MPa) Input 30 199.7 142.9 27.9 780.3 -0.4 1.38 139.3 
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Results and Discussion 

Predicting ROP is a non-linear and multivariable 
complex problem that depends on many parameters. 
The ROP may rely on various rock mass properties, 
including RQD, UCS, DPW, α, and TBM specifications 
such as cutterhead and disc cutter’s diameter. So, the 
problem is highly complicated to be solved with a simple 
linear regression approach. It is commonly accepted 
that rock properties have a significant effect on TBM 
performance. Thus, artificial intelligence techniques 
such as PSO and RBF are used to estimate the TBM 
performance as a non-linear function of hard rock 
properties. 
In this study, to develop the precise models, the 
collected dataset was divided into two types along the 
tunnel from the two projects in accordance with 
geomechanical engineering units. Afterwards, the 
models are developed using various computational 
algorithms, including PSO and RBF. Then the  
 

 
 
multivariable regression (MVR) was also applied to 
obtain an empirical equation to estimate TBM 
penetration rate. 

Developing new empirical equations 

In the present study, to find an empirical equation to 
relate TBM penetration rate as a function of 
geomechanical conditions, the multivariate regression 
(MVR) method was used. Empirical equations have 
great importance during tunneling, which is obtained 
based on actual data along the tunnel. For this purpose, 
some geomechanical parameters of hard rock materials 
(RQD, UCS, and DPW) were used as independent 
variables, and the recorded penetration rate was treated 
as a dependent variable. Figure 4 provides the 
correlations and the relevant equations for the 
penetration rate considering various rock mass 
parameters.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    (a)                                                      (b)                                                          (c)       
 

Figure 4. The correlation between penetration rate and rock mass parameters 

 
Eq. 1 shows the regression formula obtained from 
SPSS software to evaluate the influence of each input 
variables on ROP: 
ROP (m/h) = 5.765 – 0.012 UCS – 0.018 RQD – 0.207 
DPW   (1) 

Where RQD is rock quality designation, UCS (Mpa) 
and DPW (m) refer to the uniaxial compressive 
strength, and distance between planes of weakness, 
respectively. The comparison of predicted data with the 
newly developed equation and the measured 

penetration rate is indicated in Figure 5. As seen, 
measured data are in good agreement with the actual 
data. Also, the statistical histograms for measured and 
calculated results are presented in Figure 6. As seen, 
measured data show the same trend as the general 
trend of the actual data. The obtained results were 
evaluated based on the loss functions such as MAD, 
RRSE, rRMSE, RMSE, MSE, and MAPE (Table 3), 
which indicate the best correlation between the actual 
and predicted results.

 
Table 3 
Results of the loss functions for the evaluation of MVR 

Func. MAD MSE RMSE rRMSR MAPE RRSE 

MVR 0.003297 0.000325 0.018035 0.005308 0.083895 9.9494 
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Figure 5. The comparison between the measured and predicted results based on MVR method 

 

 
Figure 6. Distribution curves and frequency histograms of measured and predicted TBM penetration rate 

 
Sensitivity analysis is a method to determine whether 
the input uncertainty can affect uncertainty in its 
target variables related to the independent input 
variables. This analysis has a significant focus on 
uncertainty quantification and it determines the 
robustness of an assessment. The practical way to 
indicate the results of sensitivity analysis is a tornado 
diagram that shows the effect of each input parameter 
on the output variable when the input parameter is 
varied. 
In this study, the process of recalculating outputs under 
alternative assumptions to determine the impact of 
geological parameters along the tunnel under sensitivity 
analysis could be helpful to indicate the variables which 
have the highest effect on the TBM penetration rate. 
Changes in ROP values in terms of percentage are 
presented in Figure 7 when the input parameters are 
varied. In this diagram, the results show that the DPW 
has the least effect on ROP, however, UCS and RQD 
have higher influence on ROP prediction. 

Particle swarm optimization (PSO) technique 

The PSO technique was developed by Kennedy and 
Eberhart (1995) as an optimization algorithm based on 
artificial intelligence. This algorithm is inspired by 
swarm behavior such as bird flocking and schooling in 
nature. PSO has been widely used, and it is the 
inspiration for a new research area called swarm 
intelligence. The crossover and mutation are not 
determined as evolution operators in this method. 
However, PSO has potential solutions, namely, 
particles that move in the problem space. This 
movement was occurred by following the current 
optimum particles. There are two vital influential 
factors in PSO for calculations, including the speed and 
memory requirements [18]. The structure of the PSO 
algorithm is presented in Figure 8 (a). The velocity and 
particle's position at each generation were updated 
based on the inertia weight, accelerations, and two 
independent random numbers.

(a)   (b) 
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Figure 7. Sensitivity analysis using Tornado grap for MVR model 

 
Radial basis function (RBF) 

The values of the RBF method depend on the distance 
between the inputs and fixed points. This function 
assigns an actual value to each input and the value 
predicted by the network cannot be negative. 
Broomhead and lowe (1988) indicated that RBF has 
traditionally been associated with radial functions in a 

single-layer network [19]. The structure of this model is 
shown in Figure 8 (b). Three-layer were determined in 
the training stage including, input layers, hidden layers, 
and output layers. For increasing the linear separability 
of the feature vector, the dimension of the feature 
vector must be increased.

 

Figure 8. A view of the two optimization method, (a) PSO, (b) RBF 
 
Results of artificial intelligence methods 

In these techniques, several tests run to develop the 
network architecture that produces more consistent 
results. Figure 9 shows graphs comparing the measured 
and predicted data for the preferred models. In these 
models, reliable results are obtained. Artificial 
intelligence’s performance is assessed in terms of the 
value’s loss functions in training and testing stages, 

between the actual and the predicted penetration rate. 
The obtained results of loss functions are indicated in 
Table 4. These results show a close relationship between 
the measured and predicted values. Comparison of 
predicted target values using proposed models and 
output values measured for 27 datasets from the testing 
phase is shown in Figure 10.

 
Table 4 
Results of loss functions for evaluation of the neural networks 

Func.  MAD MSE RMSE MAPE RRSE rRMSE 

RBF Train 0.0015 2.4E-06 0.0015 0.069 0.94 0.0017 
Test 0.011 0.03 0.17 0.21 1.49 0.001 

PSO Train 0.001 3.9E-05 0.0062 0.037 0.76 0.003 

Test 0.00041 8.1E-05 0.009 0.288 0.505 0.079 
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                                                                                      (a) 

 

 
 
 
 
 
(b)                         

Figure 9. Results of models; Comparison of measured and predicted values of ROP (a) RBF, (b) PSO 
 

Figure 10. Comparison of measured and predicted values by different models for 27 testing datasets 

Conclusion 

The development of artificial intelligence methods for 
modeling TBM penetration rate (ROP) has been well 
accepted through the scientific community, as the 
various attempts made in geotechnical projects such as 
mechanized tunneling proved their efficiency. 
In this study, different models were developed using 
PSO, RBF, and MVR techniques. As a result, to 
develop the generalized models for the prediction, 
these methods were developed using a randomly 
selected training dataset (comprised of 85% of the 

whole dataset) and a testing dataset (comprised of 15% 
of the whole dataset).  
 
 
The statistical indices such as MAD, RRSE, rRMSE, 
RMSE, MSE, and MAPE were calculated to evaluate 
the deviation between the model outputs and the 
measured values. As a result, the performance of 
machine learning techniques is seen to be significantly 
better than all other models. The most reliable and 
encouraging results were obtained with these methods 
and are superior to others.  
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To obtain an empirical equation, MVR analysis is also 
conducted. The results show that the developed model 

has good accuracy, hence can be readily used to 
estimate the rate of penetration.
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