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estimate the rate of penetration (ROP) based on 180 compiled data from two
projects including the Queens water tunnel lot 3, Stage 2 in USA and Karaj-
Tehran water transfer tunnel in Iran. This study aims to evaluate the influence of
rock mass parameters on TBM performance and develop a new empirical
equation to estimate ROP using multivariate regression analysis and artificial
intelligence algorithms. In this regard, by taking advantage of machine learning
algorithms, two types of artificial intelligence techniques, including particle swarm
optimization (PSO) and radial basis function network (RBF), have been employed
to develop predictor networks to estimate TBM performance. To explain the
relationships among rock mass parameters and ROP and to offer new empirical
equations, regression analysis is also utilized. The proposed models have been
validated based on the various machine learning loss functions including, MAD,
RRSE, tRMSE, MSE, MAPE, and sensitivity analysis. The obtained results
demonstrate that the calculated values are in good agreement with the actual data.
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between planes of weakness (DPW) to provide a
prediction model for similar conditions. The machine
specifications such as cutterthead and disc cutter
diameter are fixed during tunnel construction. So, they

Introduction

Tunnel boring machines (TBM) are widely used in
tunnel construction in hard rock conditions.
Mechanized tunneling is considered for excavation in
various ground environments due to its higher speed,
lower risk, and higher efficiency and safety. However,

cannot be used as an input in the soft computing
techniques for developing new empirical models.

The predictor networks have developed to estimate the
TBM performance in hard rock conditions, including

complicated geomechanical conditions can affect the
efficiency and performance of the machine. Among
various TBM performance parameters, the rate of
penetration (ROP) is very important in the analysis and
optimization of performance. Therefore, in this
research, an attempt was made to find suitable
relationships between ROP and key rock mass
parameters including, uniaxial compressive strength
(UCS), rock quality designation (RQD), and distance

the penetration rate and advance rate, using the soft
computing method and artificial intelligence
techniques, which are well-known due to their accuracy
and efficiency, their strong predictive authority, and
using numerous range of parameters in the determined
network’s database [1-0].

For instance, Benardo and Kaliampakos (2004)
employed an artificial neural network (ANN) to
estimate TBM advance rate in hard rock conditions
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using rock specifications, including RQD, weathering
degree, RMR, permeability, and hydrological condition
[7]. In another example, the advance rate and
penetration rate of TBM tunneling were investigated
by Yagiz and Karahan (2015) using PSO soft
computing technique. In this prediction, the input
parameters divided into three categories, including
operating parameters (thrust force, cutterhead rotation
speed), rock mass properties (core fracture frequency
(CFF), and uniaxial compressive strength (UCS)) and
disc cutter’s diameter as of the major machine
specifications [8]. Gao and Li (2015) have executed the
partial least squares (PLS) and support vector machine
(SVM) methods to predict penetration rate considering
five-rock mass parameters including, UCS, peak slope
index (PSI), Brazilian tensile strength (BTS), the
distance between the planes of weakness (DPW) and
angle between the plane of weakness (a) [9]. Shao et al.
(2013) employed an extreme learning machine (ELM-
Al) to calculate the penetration rate based on the rock
mass properties, including o, DPW, UCS, and PSI [10].
Jinhuili et al. (2021) have applied a long-short term
memory recurrent neural networks (LSTM-RNN)
technique to measure the operational parameters,
including torque and thrust of the TBM in a real-time
manner with consideration of rock mass classification
and rock mass grade [11]. Samadi et al. (2021) employed
an artificial neural network (ANN) and support vector
machine (SVM) to estimate maximum surface
settlement caused by EPB machine in urban areas
based on the collected 50 data [12]. Samadi and
Hassanpour (2020), have performed the GRU-RNN
network for estimation of the chamber pressure based
on 4180 collected data [13]. Farrokh et al. (2012)
investigated ~ several models to estimate TBM
penetration rate [14]. Farrokh (2012) collected and
compiled information for 300 tunnel projects, including
rock properties, TBM specifications, TBM operational

Table 1

Characteristics of tunneling projects

parameters, and achieved petformance to look for
considerable correlations between these parameters
[15].

This study aims to employ two predictor models
including, particle swarm optimization (PSO) and radial
basis function network (RBF), and multivariable
regression analyses for developing empirical models to
predict the TBM penetration rate based on a database
developed by collecting required data from the Queens
water tunnel lot 3, Stage 2 in the USA and Karaj-Tehran
water transfer tunnel in Iran. These tunnels have been
constructed using hard rock TBMs. The obtained
results of models were evaluated using the superior loss
functions of machine learning,.

Project Description

To verify the predictability of the PSO and RBF-based
ROP prediction model proposed herein, these models
were applied in two tunneling projects excavated by
hard rock TBMs. The main characteristics of these two
TBM tunneling projects are summarized in Table 1.

The Queens water tunnel passes through five rock
types, including gneiss, orthogneiss, amphibolite,
granitic gneiss, and rhyodacite dyke. The gneiss unit is
the most dominant rock type encountered along the
tunnel alignment, with a 41% percentage. Also, the
rhyodacite dyke has less percentage encountered along
the tunnel (2.5%) (Figure 1, a). The location of stage
two of Queens tunnel no. 3, New York City, is
indicated in Figure 1, b [16]. This tunnel has a diameter
of 7.06 m and a length of 7.5 Km. The torque and
thrust values of the cutterhead at a maximum rotation
speed of 8.3 RPM are 3620 kN.m and 15592 KN,
respectively. The TBM cutterhead is equipped with 50
disc cutters in the central and peripheral patts [17].

Tunnel TBM TBM type and TBM Overburden
No. Project length (km) type manufacturer diameter (m) (m)
Queens water tunnel TBM 235-282
1 lot 3, Stage 7.5 (Robbins) 7.06 200
2 (USA)
Karaj-Tehran water Double TBM-8323
2 transfer tunnel (Iran) 30 shield ~ (HERRENKNECHT) 4.65

In Karaj-Tehran water transfer tunnel project, the data
sets related to geomechanical conditions and machine
specifications  were collected during the pre-
construction and construction phases. This line is
located in the northwest of Tehran, which connects the
KWC dam to Tehran, through a 30 km tunnel with a
diameter of 4.65 m, with 12 stations. The excavation
process has been accomplished using a TBM-S323

manufactured by HERRENKNECHT. The torque and
thrust values of the cutterhead at a maximum rotation
speed of 11 RPM are 1029 kN.m and 169.3 KN,
respectively. The TBM cutterhead is equipped with 31
disc cutters in the central and peripheral parts.

The collected dataset was derived in the range of 1500
segmental rings with a width and thickness of 1.5
meters. This tunnel is located mainly through four

Page | 2


http://dx.doi.org/10.47176/sjfst.3.3.1  
https://sjfst.srpub.org/article-6-127-fa.html

[ Downloaded from sjfst.srpub.org on 2026-02-04 |

[ DOI: 10.47176/5jfst.3.3.1 ]

rock types, including siltstone and sandstone, siliceous
tuff and green wvitric, lithic tuff, and micro
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conglomerate. A geographical situation of the project is
presented in Figure 2.

Figure 1. (a): Percentage of various rock units encountered along the tunnel alignment, (b): Location of stage two of

Queens tunnel no. 3, project area in New York City (b: [16])
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Figure 2. Location of Karaj-Tehran water transfer tunnel, Iran
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Database Development

The geomechanical properties of the projects noted
above were studied in both field and laboratory to
establish the database required to develop predictive
performance models. Three rock mass parameters are
identified as influential parameters for the TBM
penetration rate including RQD, UCS, and DPW. In
general, all of these three independent parameters play
critical roles in the wvariation range of TBM
performance.  Statistical ~ characteristics of  the
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parameters recorded in the database are summarized in
Table 2. Also, the histograms and distribution curves of
rock characteristics and TBM penetration rate recorded
in the database are indicated in Figure 3.

In this study, the collected data was divided into two
categories. 85% (153 samples) were randomly selected
for training the network, and the remaining dataset (28
samples) were considered the test data to evaluate the
training process.
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Figure 3. Distribution curve and frequency histogram of rock mass parameters and penetration rate in the database

Table 2

Summary results of descriptive statistical analysis of parameters recorded in the
database

Parameter Categ. Min. Max. Ave. St.D Var. Skew. Kurt. Med.
ROP Output 1.27 5.8 218 0.61 037 276 138 2.08
RQD Input  40.6 99.8 91.07 1528 2335 -1.75 1.8  99.28
DPW Input  0.05 2 0.87 0.67 045 041 -1.33 0.8
UCS MPa) Input 30  199.7 1429 279 7803 -04 138 1393
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Results and Discussion

Predicting ROP is a non-linear and multivariable
complex problem that depends on many parameters.
The ROP may rely on various rock mass properties,
including RQD, UCS, DPW, a, and TBM specifications
such as cutterhead and disc cutter’s diameter. So, the
problem is highly complicated to be solved with a simple
linear regression approach. It is commonly accepted
that rock properties have a significant effect on TBM
performance. Thus, artificial intelligence techniques
such as PSO and RBF are used to estimate the TBM
performance as a non-linear function of hard rock
properties.

In this study, to develop the precise models, the
collected dataset was divided into two types along the
tunnel from the two projects in accordance with
geomechanical engineering units. Afterwards, the
models are developed using various computational

SIFEST, 2021; 3(3):1-9

multivariable regression (MVR) was also applied to
obtain an empirical equation to estimate TBM
penetration rate.

Developing new empirical equations

In the present study, to find an empirical equation to
relate TBM penetration rate as a function of
geomechanical conditions, the multivariate regression
(MVR) method was used. Empirical equations have
great importance dutring tunneling, which is obtained
based on actual data along the tunnel. For this purpose,
some geomechanical parameters of hard rock materials
(RQD, UCS, and DPW) were used as independent
variables, and the recorded penetration rate was treated
as a dependent variable. Figure 4 provides the
correlations and the relevant equations for the
penetration rate considering various rock mass

algorithms, including PSO and RBF. Then the parameters.
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Figure 4. The correlation between penetration rate and rock mass parameters

Eq. 1 shows the regression formula obtained from
SPSS software to evaluate the influence of each input
variables on ROP:

ROP (m/h) = 5.765 — 0.012 UCS - 0.018 RQD -0.207
DPW (1)

Where RQD is rock quality designation, UCS (Mpa)
and DPW (m) refer to the uniaxial compressive
strength, and distance between planes of weakness,
respectively. The comparison of predicted data with the

penetration rate is indicated in Figure 5. As seen,
measured data are in good agreement with the actual
data. Also, the statistical histograms for measured and
calculated results are presented in Figure 6. As seen,
measured data show the same trend as the general
trend of the actual data. The obtained results were
evaluated based on the loss functions such as MAD,
RRSE, tRMSE, RMSE, MSE, and MAPE (Table 3),
which indicate the best correlation between the actual

newly developed equation and the measured and predicted results
Table 3
Results of the loss functions for the evaluation of MVR
Func. MAD MSE RMSE rRMSR MAPE RRSE
MVR  0.003297 0.000325 0.018035 0.005308 0.083895 9.9494
5 | Page
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Figure 5. The comparison between the measured and predicted results based on MVR method
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Figure 6. Distribution curves and frequency histograms of measured and predicted TBM penetration rate

Sensitivity analysis is a method to determine whether
the input uncertainty can affect uncertainty in its

target variables related to the independent input
variables. This analysis has a significant focus on
uncertainty quantification and it determines the
robustness of an assessment. The practical way to
indicate the results of sensitivity analysis is a tornado
diagram that shows the effect of each input parameter
on the output vatriable when the input parameter is
varied.

In this study, the process of recalculating outputs under
alternative assumptions to determine the impact of
geological parameters along the tunnel under sensitivity
analysis could be helpful to indicate the variables which
have the highest effect on the TBM penetration rate.
Changes in ROP values in terms of percentage are
presented in Figure 7 when the input parameters are
varied. In this diagram, the results show that the DPW
has the least effect on ROP, however, UCS and RQD
have higher influence on ROP prediction.

Particle swarm optimization (PSO) technique

The PSO technique was developed by Kennedy and
Eberhart (1995) as an optimization algorithm based on
artificial intelligence. This algorithm is inspired by
swarm behavior such as bird flocking and schooling in
nature. PSO has been widely used, and it is the
inspiration for a new research area called swarm
intelligence. The crossover and mutation are not
determined as evolution operators in this method.
However, PSO has potential solutions, namely,
particles that move in the problem space. This
movement was occurred by following the current
optimum particles. There are two vital influential
factors in PSO for calculations, including the speed and
memory requirements [18]. The structure of the PSO
algorithm is presented in Figure 8 (a). The velocity and
patticle's position at each generation were updated
based on the inertia weight, accelerations, and two
independent random numbets.
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Figure 7. Sensitivity analysis using Tornado grap for MVR model

Radial basis function (RBF)

The values of the RBF method depend on the distance
between the inputs and fixed points. This function
assigns an actual value to each input and the value
predicted by the network cannot be negative.
Broomhead and lowe (1988) indicated that RBF has
traditionally been associated with radial functions in a

. P
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single-layer network [19]. The structure of this model is
shown in Figure 8 (b). Three-layer were determined in
the training stage including, input layers, hidden layers,
and output layers. For increasing the linear separability
of the feature vector, the dimension of the feature

vector must be increased.
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Figure 8. A view of the two optimization method, (a) PSO, (b) RBF

Results of artificial intelligence methods

In these techniques, several tests run to develop the
network architecture that produces more consistent
results. Figure 9 shows graphs comparing the measured
and predicted data for the preferred models. In these
models, reliable results are obtained. Artificial
intelligence’s performance is assessed in terms of the
value’s loss functions in training and testing stages,

Table 4

between the actual and the predicted penetration rate.
The obtained results of loss functions are indicated in
Table 4. These results show a close relationship between
the measured and predicted values. Comparison of
predicted target values using proposed models and
output values measured for 27 datasets from the testing
phase is shown in Figure 10.

Results of loss functions for evaluation of the neural networks

Func. MAD

MSE RMSE MAPE RRSE rRMSE

RBF  Train 0.0015 24E-06 0.0015 0.069 0.94  0.0017

Test 0.011 0.03

0.17 0.21 1.49 0.001

PSO  Train 0.001  3.9E-05 0.0062 0.037 0.76 0.003
Test 0.00041 8.1E-05 0.009 0.288 0.505 0.079
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Figure 9. Results of models; Comparison of measured and predicted values of ROP (a) RBF, (b) PSO
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Figure 10. Comparison of measured and predicted values by different models for 27 testing datasets
Conclusion whole dataset) and a testing dataset (comprised of 15%

The development of artificial intelligence methods for
modeling TBM penetration rate (ROP) has been well
accepted through the scientific community, as the
vatious attempts made in geotechnical projects such as
mechanized tunneling proved their efficiency.

In this study, different models were developed using
PSO, RBF, and MVR techniques. As a result, to
develop the generalized models for the prediction,
these methods were developed using a randomly
selected training dataset (comprised of 85% of the

of the whole dataset).

The statistical indices such as MAD, RRSE, rRMSE,
RMSE, MSE, and MAPE were calculated to evaluate
the deviation between the model outputs and the
measured values. As a result, the performance of
machine learning techniques is seen to be significantly
better than all other models. The most reliable and
encouraging results were obtained with these methods
and are superior to others.
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To obtain an empirical equation, MVR analysis is also
conducted. The results show that the developed model
References

1. Alvarez Grima M, Bruines PA, Verhoef PNW.
Modeling tunnel boring machine performance by
neuro-fuzzy methods. Tunnell Underground Space Technol.
20005 15(3).

2. Ge Y, Wang ], Li K. Prediction of hard rock TBM
penetration rate using least square support vector
machine. 73th IEAC Symposium on Large Scale Complex
Systems: Theory and Applications, China, 2013; 7-10.

3. Tao H, Jingcheng W, Langwen Z. Prediction of hard
rock TBM penetration rate using random forests.
Proceedings of the 27" Chinese Control and Decision Conference,
IEEE, China, 2015; 3716-3720.

4. Yagiz S, Gokceoglu C, Sezer E, Iplikei S. Application
of two non-linear prediction tools to the estimation of
tunnel boring machine performance. App/ Eng Artifici
Intel. 2009; 22: 808-814.

5. Yagiz S, Karahan H. Prediction of hard rock TBM
performance rate using particle swarm optimization. Int
] Rock Mechan Min Sci. 2011; 48: 427-433.

6. Yoo C, Kim J. Tunneling performance prediction
using an integrated GIS and neural network. Comput
Geotech J. 2007; 34: 19-30.

7. Benardos A, Kaliampakos D. Modelling TBM
performance with artificial neural networks. Tunnel
Underground Space Technol. 2004; 19: 597-605.

8. Yagiz S, Karahan H. Application of various
optimization techniques and comparison of their
performances for predicting TBM penetration rate in
rock mass. Int | Rock Mechan Min Seci. 2015; 8: 308-315.
9. Gao L, Li X. Utlizing partial least square and
support vector machine for TBM penetration rate
prediction in hard rock conditions. | Centr S Unip.
2015; 22: 290-295.

10. Shao C, Li X, Su H. Performance prediction of

SJFST

STEST, 2021, 3(3):1-9

has good accuracy, hence can be readily used to
estimate the rate of penetration.
hard rock TBM based on extreme learning machine. In:
Lee J, Lee MC, Liu H, Ryu JH. editors. ICIRA:
Intelligent robotics and applications. Lecture notes in computer
science, Berlin-Heidelberg: Springer, 2013; 8103: 409¢16.
11. Li J, Li P, Guo D, Li X, Chen Z. Advanced
prediction of tunnel boring machine performance
based on big data. Geosei Front. 2021; 12(1): 331-338.

12. Samadi H, Hassanpour ], Farrokh E. Maximum
surface settlement prediction in EPB TBM tunneling
using soft computing techniques. ICCEET Conf. 2021.
13. Samadi H, Hassanpour J. Analysis the stability of
work face in EPB tunneling using deep learning (GRU)
and PCA techniques. 6” Dam Tunnel Conf Exhib. 2021.
14. Farrokh E, Rostami ], Laughton C. Study of various
models for estimation of penetration rate of hard rock
TBMs. Tunnel Underground Space Technol. 2010; 30: 110-
123.

15. Farrokh E. Study of utilization factor and advance
rate of hard rock TBMs. PhD. Thesis, Pennstate
University, USA. 2012.

16. Baskerville CA, Mose GD. The separation of the
Hartland formation and Ravenswood granodiorite
from the Fordham gneiss at Cameron’s line in the New
York City area, Northeastern Geol. 1989; 11(1): 22-28.

17. Khalighi BB, Diehl JJ. High performance tunnel
boring machine for Queens Water Tunnel No. 3: A
design and case history. In: Proceeding of the rapid
excavation and tunneling conference (RETC), Chapter 11,
SME publication. 1997.

18. Kennedy J, Eberhart R. Particle swarm
optimization. Proceedings of ICNN'95 - International
Conference on Neural Networks. 1995.

19. Broomhead D, Lowe D. Radial basis functions,
multi-variable functional interpolation and adaptive
networks. Royal Signals and Radar Establishment Malvern,
United Kingdom. 1988.

Copyright: © 2021 The Author(s); This is an open-access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is propetly cited.

Citation: Samadi H, Farrokh E. Utilization of Rock Mass Parameters for Performance Prediction of Rock TBMs

Using Machine Learning Algorithmsin. SJEST, 2021; 3(3):1-9.

https://doi.org/10.47176/sjfst.3.3.1

9 | Page


https://link.springer.com/journal/11771
https://www.sciencedirect.com/science/journal/16749871
https://ieeexplore.ieee.org/author/37276103200
https://ieeexplore.ieee.org/author/37276148000
https://ieeexplore.ieee.org/xpl/conhome/3505/proceeding
https://ieeexplore.ieee.org/xpl/conhome/3505/proceeding
https://ieeexplore.ieee.org/xpl/conhome/3505/proceeding
https://doi.org/10.47176/sjfst.3.3.1
https://doi.org/10.47176/sjfst.3.3.1
http://dx.doi.org/10.47176/sjfst.3.3.1  
https://sjfst.srpub.org/article-6-127-fa.html
http://www.tcpdf.org

