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Introduction:

The process of free convection flow and mass transfer over a vertical plate with radiation and uniform
transpiration effects an important role in the design of chemical processing equipment, nuclear reactors, and
formation and dispersion of fog. A detailed discussion on this topic can be found in Soundalgekar VM and
Wavre PD [1], Raptis [2], Gokhale [3], Takhar et al. [4], Gebhart. [5], Callahan and Marner [6],
Soundalgekar and Ganesan. [7], Ekambavannan [8], Birajdar et al. [9], and Sacheti et al.[10] considered the
mass transfer effects on flow past an impulsively started infinite isothermal vertical plate with constant mass
flux. Sattar et al. [11] presented a numerical solution to the problem of free convection flow past an
impulsively vertical plate in porous media and in the presence of variable suction. Emad et al. [12]
investigated the MHD free-convection flow of a non-Newtonian power-law fluid at a stretching surface with
a uniform free-stream. Abd et al. [13] obtained the numerical solutions for the radiation effects on MHD
unsteady free-convection flow over vertical porous plate. Kim [14] developed the numerical solutions for
Unsteady MHD convection flow of polar fluids past a vertical moving porous plate in a porous medium.
Sharma and Singh [15] investigated the Unsteady MHD free convection and heat transfer along a vertical
porous plate with variable suction and internal heat generation. In this continuation, Numerical solution of
unsteady MHD flow past a semi-infinite isothermal vertical plate was investigated by Ganesan and Palani
[16-17]. Numerical solution of the effects of mass transfer on the MHD flow past an impulsively started
infinite vertical plate with variable temperature or constant heat flux was investigated by Shanker and Kishan
[18]. Takhar et al. [19] analyzed the Unsteady mixed convection flow from a rotating vertical cone with a
magnetic field are obtained. Elbashbeshy [20] analyzed the Heat and Mass transfer along a vertical plate with
variable surface tension and concentration in the presence of the magnetic field. Motivated by the above
investigations the present paper aims to study the combined free convection flow and mass transfer over a
vertical plate with radiation and uniform transpiration effects. The flow in the fluid is caused due to the
uniform motion of the plate. Numerical solutions are derived for the velocity distributions, temperature, and
concentration fields by using the implicit finite difference scheme of Crank—Nicolson’s type. The present
study is of course of great practical and technological importance, for example, in astrophysical regimes, the
presence of planetary debris, cosmic dust, and so forth and creates a suspended porous medium saturated
with plasma fluids. Combined radiation and heat and mass transfer, due to temperature and concentration
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variations with free convection flow in fluid-saturated porous plate, has several important applications in a
variety of engineering processes including heat exchanger devices, petroleum reservoirs, chemical catalytic
reactors, solar energy porous water collector systems, and ceramic materials.

1  MATHEMATICAL ANALYSIS

Consider the free convection flow and mass transfer on a vertical plate with radiation and uniform
transpiration effects and constant wall temperatures (Fig. 1). Under these assumptions and Boussinesq’s
approximation, the flow is governed by the following system of equations:

X
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Fig (1) Sketch of the physical model
Continuity equation:
8_u + ﬂ =0 (1)
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By using the Rosseland approximation, the radiative flux vector q, can be written as:

4" 0T *
qr=3f* 5 (5)

12| Page


http://dx.doi.org/10.29252/sjfst.2.3.11
http://sjfst.srpub.org/article-6-63-fa.html

[ Downloaded from gjfst.srpub.org on 2025-08-03 ]

[ DOI: 10.29252/5fst.2.3.11 ]

SRPH Journal of Fundamental Sciences and Technology, 2(3), 11-24, 2020

It is assumed that the temperature differences within the flow are sufficiently small so that T * can be
expanded in a Taylor series about the free stream temperature T_ so that after rejecting the higher order
terms:

T T -3} (6)

The thermal radiation is quite significant and the quality of final product can be controlled by the control
of cooling rate via radiation parameter. In polymer industry, the thermal radiation effect may play an
important role in the control of heat transfer process if the process is directed in a thermally controlled
environment. The desired quality of the final product can be reached by the knowledge of radiative heat

transfer.
Where u and v are components of the velocity in X and y directions, respectively, t is the time, v is the

kinematic viscosity, . is the volumetric coefficient of thermal expansion, £. is the volumetric coefficient
of concentration expansion, g is the acceleration due to gravity, p is the density, o is the Stephan—

Boltzman constant, k " is the Rosseland mean absorption coefficient, D is the coefficient of mass diffusivity,
a is fluid thermal diffusivity, ¢ is the concentration, C, is the specific heat at constant pressure, T is the

temperature and T is the temperature of the fluid far away from the cylinder.
The necessary initial and boundary conditions are:
tSO UZO,V:O ,T:TOO’(::O

t>0 UZO,V ZO’T :TOO,C—C at X =0

)0 u=0yv=-wv, T=T,, 6 C=cC, a y=0 (7)

00 u=0 T=T. ¢y, at y >

Now introduce the following non dimensional quantities:

* T3
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Where a is the cylinder radius, X , Y is dimensionless axis in the direction along and normal to the
surface, U V is the dimensionless velocities, t' is the dimensionless time, @ is the dimensionless

temperature, C is the dimensionless concentration, Tvv is the temperature at the surface, L is the plate
length, Gr, is the thermal Grashof number, Gr. is the mass Grashof number, R, is the radiation
parameter, Pr is the prandtl number and Sc is the Schmidt number.

Continuity equation:

6&4.%;0(9)
oxX oY
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Momentum equation:

1
(10) v +U U +V v _ GZUZ +Gr, *0+Gr.C
o’ oX oy oY

Energy equation:
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Concentration equation:

2
oC U8C+V6C_18C

+ =—— (12)
ot’ oX oY ScoY
The dimensionless boundary conditions become:
t'<o. U=0V =0 6=0 c-o
tho :U=0 V=0 6=0c=0 at X =0
th0: U =0,V =V,=5,6 0=1 c=1 atY =0 (13)
tho :U=0 60=0 c=o at Y o

In which S is the dimensionless wall-transpiration rate and negative S is blowing rate and positive S is
the suction rate.Local skin friction, Nusselt number and Sherwood number. In non-dimensional quantities
are:

C, =Gr 4(“ j 149
oY
1
Nu =-Gr*X .0'(x,0,t) (15)
Sh=-XGr* [6(: j (16)
N oo

3 NUMERICAL SOLUTION OF THE PROBLEM

The governing equations (9-12) are steady, coupled and non-linear with boundary conditions. An implicit
finite-difference technique of Crank—Nicolson has been employed to solve the nonlinear coupled equations,
as described (Thomas algorithm) in Carnahan et al [25].The finite difference equations corresponding to
equations (9-12) are as follows:

U _U n +U n+l U n+1 U U n

ij-1 i-1,j-1 7111)

(V n+l —V n+l +V n+l _VInJ+_ll) 0 (17)

i,j-1

1 n+1 n+1
aax iU

1
2AY
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The region of integration is considered as a rectangle with sides X (:1) and Y . (:10), where

correspondingto Y ., (= 10) which lies far from the momentum and energy boundary layers. An appropriate
mesh sizes considered for the calculation are AX =0.01, AY =0.05andAt’=0.005.

4 RESULTS AND DISCUSSION

In this paper, it has been investigated the problem of free convection flow and mass transfer on a vertical
plate with radiation and uniform transpiration effects and constant wall temperatures. The velocity,
temperature, local skin-friction coefficient and the local Nusselt and Sherwood number profiles for the effect
of radiation parameter, thermal Grashof number, mass Grashof humber, Prandtl number and Schmidt number
are presented graphically in figure 2-22.

The effects of transpiration rate (S ), mass Grashof number (Gr,), Schmidt number (Sc), radiation

parameter (R, ) and thermal Grashof number (Gr, ) on the velocity profiles are shown in Figs. 2-6. It is
observed that the velocity increases with increase in transpiration rate (S ), mass Grashof number (Gr, ) and
radiation parameter (R, ). Is that the velocity decreases with increase in Schmidt number (Sc ) and thermal
Grashof number (Gr, ).

Figs 7-10 display the influence of transpiration rate (S ), mass Grashof number (Gr, ), radiation parameter
(R, ) and Prandtl number. It is clear that increasing the Prandtl number and mass Grashof number tends to
decreases the temperature. The hydrodynamics boundary layer become thick as the Prandtl number decreases
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and mass Grashof number. Is that increasing the radiation parameter and transpiration rate tends to increases
the temperature

Figs 11-13 illustrates the dimensionless concentration for transpiration rate (S ), mass Grashof number
(Gr. ) and Schmidt number (Sc ), It is obvious that, the dimensionless concentration decreases with increases

in mass Grashof number and Schmidt number. Is that dimensionless concentration increases with increases
in transpiration rate.

Figs. 14-17 depicts the local skin-friction coefficient profiles for transpiration rate (S ), mass Grashof
number (Gr, ), radiation parameter (r,) and thermal Grashof number (Gr, ). Then, local skin-friction

coefficient profiles decrease with increase in thermal Grashof number and increase with increase in
transpiration rate, mass Grashof number and radiation parameter.
The influence of transpiration rate (S ), mass Grashof number (Gr, ) and radiation parameter (r,) on the

local Nusselt number profiles are shown in Figs. 18-20. It is observed that the local Nusselt number increases
with increase in transpiration rate and mass Grashof number. As well as the local Nusselt number decreases
with increase in radiation parameter.

The influence of transpiration rate (S ) and Schmidt number (Sc ) on the local Sherwood number profiles are
shown in Figs. 21-22. It is observed that the local Sherwood number decreases with increase in transpiration
rate. As well as the local Sherwood number increases with increase in Schmidt number.
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Figure 3: Effect of mass Grashof number (Gr, ) on dimensionless velocity Profiles
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Figure 6: Effect of thermal Grashof number (Gr. ) on dimensionless velocity Profiles

Page |17


http://dx.doi.org/10.29252/sjfst.2.3.11
http://sjfst.srpub.org/article-6-63-fa.html

[ Downloaded from gjfst.srpub.org on 2025-08-03 ]

[ DOI: 10.29252/5fst.2.3.11 ]

0,8

0,6

0,4

0,2

0,8

0,8

0,6

Figure 9: Effect of Prandtl number (Pr) on dimensionless temperature Profiles
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Figure 10: Effect of radiation parameter (R, ) on dimensionless temperature Profiles
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Figure 12: Effect of mass Grashof number (Gr, ) on dimensionless concentration Profiles
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Figure 18: Effect of transpiration rate (S ) on local Nusselt number Profiles
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Figure 19: Effect of mass Grashof number (Gr, ) on local Nusselt number Profiles
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Figure 21: Effect of transpiration rate (S ) on local Sherwood number Profiles
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